Zacytuj

[1] Tulicki, J., Petryna, J., Sulowicz, M. (2016). Fault diagnosis of induction motors in selected working conditions based on axial flux signals. Technical Trasactions, Electrical Engineering Issue 3-E, 99-113. DOI: 10.4467/2353737XCT.16.269.6068.10.4467/2353737XCT.16.269.6068Open DOISearch in Google Scholar

[2] Ewert, P. (2017). Use of axial flux in the detection of electrical faults in induction motors. In International Symposium on Electrical Machines (SME). IEEE, DOI: 10.1109/ISEM.2017.7993571.10.1109/ISEM.2017.7993571Open DOISearch in Google Scholar

[3] Pietrowski, W. (2011). Application of Radial Basis Neural Network to diagnostics of induction motor stator faults using axial flux. Przeglad Elektrotechniczny, 87 (6), 190-192.Search in Google Scholar

[4] Fulnecek, J., Misak, S. (2018). Stator current and axial magnetic flux analysis of induction motor. In International Conference on Diagnostics in Electrical Engineering (Diagnostika). IEEE, DOI: 10.1109/DIAGNOSTIKA.2018.8526025.10.1109/DIAGNOSTIKA.2018.8526025Open DOISearch in Google Scholar

[5] Calis, H. (2014). Vibration and motor current analysis of induction motors to diagnose mechanical faults. Journal of Measurements in Engineering, 2 (4), 190-198.Search in Google Scholar

[6] Garcia-Bracamonte, J.E., Ramirez-Cortes, J.M., Rangel-Magdaleno, J.D., Gomez-Gil, P., Peregrina-Barreto, H., Alarcon-Aquino, V. (2019). An approach on MCSA-based fault detection using independent component analysis and neural networks. IEEE Transactions on Instrumentation and Measurement, 68 (5), 1353-1361. DOI: 10.1109/TIM.2019.2900143.10.1109/TIM.2019.2900143Open DOISearch in Google Scholar

[7] Verucchi, C., Bossio, J., Bossio, G., Acosta, G. (2016). Misalignment detection in induction motors with flexible coupling by means of estimated torque analysis and MCSA. Mechanical Systems and Signal Processing, 80, 570-581. DOI: 10.1016/j.ymssp.2016.04.035.10.1016/j.ymssp.2016.04.035Open DOISearch in Google Scholar

[8] Ciszewski, T., Swedrowski, L., Gelman, L. (2015). Induction motor bearings diagnostic using MCSA and normalized tripple covariance. In IEEE 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED). IEEE, 333-337. DOI: 10.1109/DEMPED.2015.7303711.10.1109/DEMPED.2015.7303711Search in Google Scholar

[9] Valles-Novo, R., Rangel-Magdaleno, J., Ramirez-Cortes, J., Peregrina-Barreto, H., Morales-Caporal, R. (2014). Broken bar detection on squirrel cage induction motors with MCSA and EMD. In IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. IEEE, 993-998. DOI: 10.1109/I2MTC.2014.6860892.10.1109/I2MTC.2014.6860892Open DOISearch in Google Scholar

[10] Garcia-Ramirez, A.G., Morales-Hernandez, L.A., Osornio-Rios, R.A., Garcia-Perez, A., Romero-Troncoso, R.J. (2014). Thermographic technique as a complement for MCSA in induction motor fault detection. In International Conference on Electrical Machines (ICEM). IEEE, 1940-1945. DOI: 10.1109/ICELMACH.2014.6960449.10.1109/ICELMACH.2014.6960449Search in Google Scholar

[11] Glowacz, A., Glowacz, Z. (2017). Diagnosis of the three-phase induction motor using thermal imaging. Infrared Physics & Technology, 81, 7-16. DOI: 10.1016/j.infrared.2016.12.003.10.1016/j.infrared.2016.12.003Open DOISearch in Google Scholar

[12] Zhang, C., Peng, Z.X., Chen, S., Li, Z.X., Wang, J.G. (2018). A gearbox fault diagnosis method based on frequency-modulated empirical mode decomposition and support vector machine. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232 (2), 369-380. DOI: 10.1177/0954406216677102.10.1177/0954406216677102Open DOISearch in Google Scholar

[13] Li, Z.X., Jiang, Y., Duan, Z.H., Peng, Z.X. (2018). A new swarm intelligence optimized multiclass multi-kernel relevant vector machine: An experimental analysis in failure diagnostics of diesel engines. Structural Health Monitoring, 17 (6), 1503-1519. DOI: 10.1177/1475921717746735.10.1177/1475921717746735Open DOISearch in Google Scholar

[14] Xi, W.K., Li, Z.X., Tian, Z., Duan, Z.H. (2018). A feature extraction and visualization method for fault detection of marine diesel engines. Measurement, 116, 429-437. DOI: 10.1016/j.measurement.2017.11.035.10.1016/j.measurement.2017.11.035Open DOISearch in Google Scholar

[15] Wang, T.Y., Han, Q.K., Chu, F.L., Feng, Z.P. (2019). Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: A review. Mechanical Systems and Signal Processing, 126, 662-685. DOI: 10.1016/j.ymssp.2019.02.051.10.1016/j.ymssp.2019.02.051Open DOISearch in Google Scholar

[16] Ebrahimi, E. (2019). A method based on support vector machine and vibration analysis for fault detection in bevel gears (Case study: Differential). Insight, 61 (5), 279-286. DOI: 10.1784/insi.2019.61.5.279.10.1784/insi.2019.61.5.279Open DOISearch in Google Scholar

[17] Chomphan, S. (2019). Vibration signal analysis of a motorcycle. International Journal of GEOMATE, 16 (56), 27-32. DOI: 10.21660/2019.56.4549.10.21660/2019.56.4549Search in Google Scholar

[18] Isham, M.F., Leong, M.S., Heel, L.M., Ahmad, Z.A.B. Iterative variational mode decomposition and extreme learning machine for gearbox diagnosis based on vibration signals. Journal of Mechanical Engineering and Sciences, 13 (1), 4477-4492. DOI: 10.15282/jmes.13.1.2019.10.0380.10.15282/jmes.13.1.2019.10.0380Search in Google Scholar

[19] Sikora, M., Szczyrba, K., Wrobel, L., Michalak, M. (2019). Monitoring and maintenance of a gantry based on a wireless system for measurement and analysis of the vibration level. Eksploatacja i Niezawodnosc (Maintenance and Reliability), 21 (2), 341-350. DOI: 10.17531/ein.2019.2.19.10.17531/ein.2019.2.19Search in Google Scholar

[20] Chang, H.C., Jheng, Y.M., Kuo, C.C., Hsueh, Y.M. (2019). Induction motors condition monitoring system with fault diagnosis using a hybrid approach. Energies, 12 (8). DOI: 10.3390/en12081471.10.3390/en12081471Search in Google Scholar

[21] Suh, S., Lee, H., Jo, J., Lukowicz, P., Lee, Y.O. (2019). Generative oversampling method for imbalanced data on bearing fault detection and diagnosis. Applied Sciences-Basel, 9 (4). DOI: 10.3390/app9040746.10.3390/app9040746Open DOISearch in Google Scholar

[22] Gangsar, P., Tiwari, R. (2019). Diagnostics of mechanical and electrical faults in induction motors using wavelet-based features of vibration and current through support vector machine algorithms for various operating conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41 (2). DOI: 10.1007/s40430-019-1574-5.10.1007/s40430-019-1574-5Open DOISearch in Google Scholar

[23] Gowid, S., Dixon, R., Ghani, S., Shokry, A. (2019). Robustness analysis of the FFT-based segmentation, feature selection and machine fault identification algorithm. Insight, 61 (5), 271-278. DOI: 10.1784/insi.2019.61.5.271.10.1784/insi.2019.61.5.271Open DOISearch in Google Scholar

[24] Parey, A., Singh, A. (2019). Gearbox fault diagnosis using acoustic signals, continuous wavelet transform and adaptive neuro-fuzzy inference system. Applied Acoustics, 147, 133-140. DOI: 10.1016/j.apacoust.2018.10.013.10.1016/j.apacoust.2018.10.013Open DOISearch in Google Scholar

[25] Islam, M.M.M., Kim, J.M. (2019). Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector Machines. Reliability Engineering & System Safety, 184, 55-66. DOI: 10.1016/j.ress.2018.02.012.10.1016/j.ress.2018.02.012Open DOISearch in Google Scholar

[26] Fushun, L., Shujian, G., Huawei, H., Zhe, T., Peng, L. (2019). Interference reduction of high-energy noise for modal parameter identification of offshore wind turbines based on iterative signal extraction. Ocean Engineering, 183, 372–383. DOI: 10.1016/j.oceaneng.2019.05.009.10.1016/j.oceaneng.2019.05.009Open DOISearch in Google Scholar

[27] Hasan, M.J., Kim, J.M. (2019). Fault detection of a spherical tank using a genetic algorithm-based hybrid feature pool and k-nearest neighbor algorithm. Energies, 12 (6). DOI: 10.3390/en12060991.10.3390/en12060991Open DOISearch in Google Scholar

[28] Xiong, J.B., Zhang, Q.H., Peng, Z.P., Sun, G.X., Xu, W.C., Wang, Q. (2015). A diagnosis method for rotation machinery faults based on dimensionless indexes combined with k-nearest neighbor algorithm. Mathematical Problems in Engineering. DOI: 10.1155/2015/563954.10.1155/2015/563954Open DOISearch in Google Scholar

[29] Zhou, Y.Q., Sun, B.T., Li F.P., Song, W.L. (2015). NC machine tools fault diagnosis based on kernel PCA and k-nearest neighbor using vibration signals. Shock and Vibration. DOI: 10.1155/2015/139217.10.1155/2015/139217Open DOISearch in Google Scholar

[30] Yadav, A., Swetapadma, A. (2015). A novel transmission line relaying scheme for fault detection and classification using wavelet transform and linear discriminant analysis. Ain Shams Engineering Journal, 6, 199-209. DOI: 10.1016/j.asej.2014.10.005.10.1016/j.asej.2014.10.005Open DOISearch in Google Scholar

[31] Haddad, R.Z., Strangas, E.G. (2016). On the accuracy of fault detection and separation in permanent magnet synchronous machines using MCSA/MVSA and LDA. IEEE Transactions on Energy Conversion, 31, 924-934. DOI: 10.1109/TEC.2016.2558183.10.1109/TEC.2016.2558183Open DOISearch in Google Scholar

[32] Fu, W.L., Tan, J.W., Xu, Y.H., Wang, K., Chen, T. (2019). Fault diagnosis for rolling bearings based on fine-sorted dispersion entropy and SVM optimized with mutation SCA-PSO. Entropy, 21 (4). DOI: 10.3390/e21040404.10.3390/e21040404751489133267118Open DOISearch in Google Scholar

[33] Jiang, Q.Y., Chang, F.L. (2019), A novel rolling-element bearing faults classification method combines lower-order moment spectra and support vector machine. Journal of Mechanical Science and Technology, 33 (4), 1535-1543. DOI: 10.1007/s12206-019-0305-2.10.1007/s12206-019-0305-2Open DOISearch in Google Scholar

[34] Gajewski, J., Valis, D. (2017). The determination of combustion engine condition and reliability using oil analysis by MLP and RBF neural networks. Tribology International, 115, 557-572. DOI: 10.1016/j.triboint.2017.06.032.10.1016/j.triboint.2017.06.032Open DOISearch in Google Scholar

[35] Hu, Z.B., Su, J., Jotsov, V., Kochan, O., Mykyichuk, M., Kochan, R., Sasiuk, T. (2016). Data science applications to improve accuracy of thermocouples. In IEEE 8th International Conference on Intelligent Systems (IS). IEEE, 180-188. DOI: 10.1109/IS.2016.7737419.10.1109/IS.2016.7737419Search in Google Scholar

[36] Glowacz, A., Glowacz, Z. (2016). Recognition of images of finger skin with application of histogram, image filtration and K-NN classifier. Biocybernetics and Biomedical Engineering, 36, 95-101. DOI: 10.1016/j.bbe.2015.12.005.10.1016/j.bbe.2015.12.005Open DOISearch in Google Scholar

eISSN:
1335-8871
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing