Otwarty dostęp

Design and Analysis of a Novel Six-Component F/T Sensor based on CPM for Passive Compliant Assembly


Zacytuj

[1] Nakamura, Y., Yoshikawa, T., Futamata, I. (1998). Design and signal processing of six-axis force sensors. In Robotics Research : The Fourth InternationalSymposium. MIT Press, 75-81.Search in Google Scholar

[2] Kim, J.H., Kang, D.I., Shin, H.H., Park, Y.K. (2003). Design and analysis of a column type multicomponent force/moment sensor. Measurement, 33, 213-219.10.1016/S0263-2241(02)00044-1Search in Google Scholar

[3] Kim, G.S. (2001). The design of a six-component force/moment sensor and evaluation of its uncertainty. Measurement Science and Technology, 12 (9), 1445-1455.10.1088/0957-0233/12/9/310Search in Google Scholar

[4] Hashimoto, K. et al. (2013). Overload protection mechanism for 6-axis force/torque sensor. In Romansy19 - Robot Design, Dynamics and Control. Springer, Vol. 544, 383-390.Search in Google Scholar

[5] Liu, S.A., Tzo, H.L. (2002). A novel six-component force sensor of good measurement isotropy and sensitivities. Sensors and Actuators A: Physical, 100 (2-3), 223-230.10.1016/S0924-4247(02)00135-8Search in Google Scholar

[6] Liang, Q., Zhang, D., Wang, Y., Coppola, G., Ge, Y. (2013). PM based multi-component F/T sensors-state of the art and trends. Robotics and Computer-Integrated Manufacturing, 29 (4), 1-7.10.1016/j.rcim.2012.12.002Search in Google Scholar

[7] ATI Industrial Automation. Multi-axis force / torquesensors. http://www.ati-ia.com/products/ft/sensors.aspx.Search in Google Scholar

[8] Baki, P., Szekely, G., Kosa, G. (2012). Miniature triaxial force sensor for feedback in minimally invasive surgery. In Biomedical Robotics and Biomechatronics(BioRob) : 4th IEEE RAS & EMBS InternationalConference, 24-27 June 2012. IEEE, 805-810.Search in Google Scholar

[9] Mastinu, G., Gobbi, M., Previati, G. (2011). A new six-axis load cell. Part I: Design. ExperimentalMechanics, 51 (3), 373-388.Search in Google Scholar

[10] Gailler, A., Reboulet, C. (1983). An isostatic six component force and torque sensor. In 13thInternational Symposium on Industrial Robots andRobots 7, 17-21 April 1983. Robotics International of SME.Search in Google Scholar

[11] Dwarakanath, T.A., Bhaumick, T.K., Venkatesh, D. (1999). Implementation of Stewart platform based force-torque sensor. In Multisensor Fusion andIntegration for Intelligent Systems (MFI ’99) :IEEE/SICE/RSJ International Conference, 15-18August, 1999, 32-37.10.1109/MFI.1999.815961Search in Google Scholar

[12] Ranganath, R., Nair, P.S., Mruthyunjaya, T.S., Ghosal, A. (2004). A force-torque sensor based on a Stewart platform in a near-singular configuration. Mechanismand Machine Theory, 39 (9), 971-998.10.1016/j.mechmachtheory.2004.04.005Search in Google Scholar

[13] Nguyen, C., Antrazi, S., Zhou, Z. (1991). Analysis and implementation of a 6 DOF Stewart platform-based force sensor for passive compliant robotic assembly. In IEEE Proceedings of Southeastcon ‘91, 7-10 April1991. IEEE, 880-884.10.1109/SECON.1991.147886Search in Google Scholar

[14] Dasgupta, B., Reddy, S., Mruthyunjaya, T.S. (1994).Synthesis of a force-torque sensor based on the Stewart platform mechanism. In Proceedings of theNational Convention of Industrial Problems inMachines and Mechanisms, Bangalore, India, 14-23.Search in Google Scholar

[15] Hou, Y., Zeng, D., Yao, J., Kang, K., Lu, L., Zhao, Y. (2009). Optimal design of a hyperstatic Stewart platform-based force/torque sensor with genetic algorithms. Mechatronics, 19 (2), 199-204.10.1016/j.mechatronics.2008.08.002Search in Google Scholar

[16] Jia, Z.Y., Lin, S., Liu, W. (2010). Measurement method of six-axis load sharing based on the Stewart platform. Measurement, 43 (3), 329-335.10.1016/j.measurement.2009.11.005Search in Google Scholar

[17] Liu, W., Li, Y.J., Jia, Z.Y., Zhang, J., Qian, M. (2011).Research on parallel load sharing principle of piezoelectric six-dimensional heavy force/torque sensor. Mechanical Systems and Signal Processing, 25 (1), 331-343.10.1016/j.ymssp.2010.09.008Search in Google Scholar

[18] Jin, W.L., Mote, C.D., Jr. (1998). A six-component silicon micro force sensor. Sensors and Actuators A:Physical, 65 (2-3), 109-115.10.1016/S0924-4247(97)01671-3Search in Google Scholar

[19] Mei, T., Ge, Y., Chen, Y., Ni, L., Liao, W.H., Xu, Y., Li, W.J. (1999). Design and fabrication of an integrated three-dimensional tactile sensor for space robotic applications. In Micro Electro MechanicalSystems (MEMS ’99) : 12th IEEE InternationalConference, 17-21 January 1999. IEEE, 112-117.Search in Google Scholar

[20] Brookhuis, R.A., Lammerink, T.S.J., Wiegerink, R.J., de Boer, M.J., Elwenspoek, M.C. (2012). 3D force sensor for biomechanical applications. Sensors andActuators A: Physical, 182, 28-33.10.1016/j.sna.2012.04.035Search in Google Scholar

[21] Takenawa, S. (2009). A soft three-axis tactile sensor based on electromagnetic induction. In Mechatronics2009. ICM 2009 : IEEE International Conference, 14-17 April 2009. IEEE, 1-6.Search in Google Scholar

[22] Liu, T., Inoue, Y., Shibata, K., Yamasaki, Y., Nakahama, M. (2004). A six-dimension parallel force sensor for human dynamics analysis. In Robotics,Automation and Mechatronics, 1-3 December 2004.IEEE, 208-212.Search in Google Scholar

[23] Hirose, S., Yoneda, K. (1990). Development of optical six-axial force sensor and its signal calibration considering nonlinear interference. In Robotics andAutomation, 13-18 May 1990. IEEE, 46-53.10.1109/ROBOT.1990.125944Search in Google Scholar

[24] Gobbi, M., Previati, G., Guarneri, P., Mastinu, G. (2011). A new six-axis load cell. Part II: Error analysis, construction and experimental assessment of performances. Experimental Mechanics, 51 (3), 389-399.Search in Google Scholar

[25] Trease, B.P., Moon, Y.M., Kota, S. (2005). Design of large-displacement compliant joints. ASME Journal ofMechanical Design, 127, 788-798.10.1115/1.1900149Search in Google Scholar

[26] Zhu, Z.H., Meguid, S.A. (2008). Vibration analysis of a new curved beam element. Journal of Sound andVibration, 309 (1), 86-95.10.1016/j.jsv.2007.04.051Search in Google Scholar

[27] Wu, T., Chen, J., Chang, S. (2008) A six-DOF prismatic-spherical-spherical parallel compliant nanopositioner. IEEE Transactions on UltrasonicsFerroelectrics and Frequency Control, 55 (12), 2544-2551.Search in Google Scholar

[28] Man Bok Hong, Yung-Ho Jo. (2012). Design and evaluation of 2-DOF compliant forceps with forcesensing capability for minimally invasive robot surgery. IEEE Transactions on Robotics, 28 (4), 932-941.10.1109/TRO.2012.2194889Search in Google Scholar

[29] Dong, W., Sun, L., Du, Z. (2008). Stiffness research on a high-precision, large-workspace parallel mechanism with compliant joints. PrecisionEngineering, 32 (3), 222-231.10.1016/j.precisioneng.2007.08.002Search in Google Scholar

[30] Paros, J.M., Weisbord, L. (1965). How to design flexure hinges. Machine Design, 37, 151-156.Search in Google Scholar

[31] Smith, S. (2000). Flexures: Elements of ElasticMechanisms. New York: Gordon and Breach Science Publishers.10.1201/9781482282962Search in Google Scholar

[32] Boyes, W. (2009). Instrumentation Reference Book, 3rd Edition. Burlington, MA: Elsevier.Search in Google Scholar

[33] Sameer A. Joshi. (2002). A comparative study of twoclasses of 3-DOF parallel manipulators. Ph.D. dissertation, Department of Mechanical Engineering, University of Maryland, College Park, MD.Search in Google Scholar

[34] Ouyang, P.R. (2005). Hybrid intelligent machinesystems: Design, modeling and control. Ph.D. dissertation, University of Saskatchewan, Canada.Search in Google Scholar

[35] Liang, Q., Zhang, D., Song, Q., Ge, Y. (2010).Micromanipulator with integrated force sensor based on compliant parallel mechanism. In Robotics andBiomimetics (ROBIO 2010), 14-18 December 2010.IEEE, 709-714.10.1109/ROBIO.2010.5723413Search in Google Scholar

[36] Puangmali, P. et al. (2012). Miniature 3-axis distal force sensor for minimally invasive surgical palpation. IEEE/ASME Transactions on Mechatronics, 17 (4), 646-656.10.1109/TMECH.2011.2116033Search in Google Scholar

[37] Bicchi, A. (1992). A criterion for optimal design of multi-axis force sensors. Robotics and AutonomousSystems, 10 (4), 269-286. 10.1016/0921-8890(92)90005-JSearch in Google Scholar

eISSN:
1335-8871
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing