This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Amer, A.A., El-Hoseny, S., Properties and performance of metakaolin pozzolanic cement pastes, J. Therm. Anal. Calorim., 2017, 129: 33–44. 10.1007/s10973-017-6087-9AmerA.A.El-HosenyS.Properties and performance of metakaolin pozzolanic cement pastesJ. Therm. Anal. Calorim.2017129334410.1007/s10973-017-6087-9Open DOI
Rios, S., Ramos, C., Viana da Fonseca, A., Cruz, N., Rodrigues, C., Mechanical and durability properties of a soil stabilised with an alkali-activated cement, Eur. J. Environ. Civ. Eng., 2019, 23: 245–267. 10.1080/19648189.2016.1275987RiosS.RamosC.Viana da FonsecaA.Cruz,N.RodriguesC.Mechanical and durability properties of a soil stabilised with an alkali-activated cementEur. J. Environ. Civ. Eng.20192324526710.1080/19648189.2016.1275987Open DOI
Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., Van Deventer, J.S.J., Geopolymer technology: The current state of the art, J. Mater. Sci., 2007, 42: 2917–2933. 10.1007/s10853-006-0637-zDuxsonP.Fernández-JiménezA.ProvisJ.L.LukeyG.C.PalomoA.Van DeventerJ.S.J.Geopolymer technology: The current state of the artJ. Mater. Sci.2007422917293310.1007/s10853-006-0637-zOpen DOI
Lee, W.K.W., Van Deventer, J.S.J., The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements, Cem. Concr. Res., 2002, 32: 577–584LeeW.K.W.Van DeventerJ.S.J.The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cementsCem. Concr. Res.200232577584Search in Google Scholar
Zhang, M., Guo, H., El-Korchi, T., Zhang, G., Tao, M., Experimental feasibility study of geopolymer as the next-generation soil stabilizer, Constr. Build. Mater., 2013, 47: 1468–1478Zhang,M.GuoH.El-KorchiT.ZhangG.TaoM.Experimental feasibility study of geopolymer as the next-generation soil stabilizerConstr. Build. Mater.20134714681478Search in Google Scholar
Yaghoubi, M., Arulrajah, A., Miri Disfani, M., Horpibulsuk, S., Leong, M., Compressibility and strength development of geopolymer stabilized columns cured under stress, Soils Found., 2020, 60: 1241–1250. 10.1016/j.sandf.2020.07.005YaghoubiM.ArulrajahA.Miri DisfaniM.HorpibulsukS.LeongM.Compressibility and strength development of geopolymer stabilized columns cured under stressSoils Found.2020601241125010.1016/j.sandf.2020.07.005Open DOI
Palomo, A., Blanco-Varela, M.T., Granizo, M.L., Puertas, F., Vazquez, T., Grutzeck, M.W., Chemical stability of cementitious materials based on metakaolin, Cem. Concr. Res., 1999, 29: 997–1004Palomo,A.Blanco-VarelaM.T.GranizoM.L.PuertasF.VazquezT.GrutzeckM.W.Chemical stability of cementitious materials based on metakaolinCem. Concr. Res.1999299971004Search in Google Scholar
Cheng, T.W., Chiu, J.P., Fire-resistant geopolymer produced by granulated blast furnace slag, Miner. Eng., 2003, 16: 205–210ChengT.W.ChiuJ.P.Fire-resistant geopolymer produced by granulated blast furnace slagMiner. Eng.200316205210Search in Google Scholar
Zhang, H.Y., Liu, J.C., Wu, B., Mechanical properties and reaction mechanism of one-part geopolymer mortars, Constr. Build. Mater., 2021, 273: 121973. 10.1016/j.conbuildmat.2020.121973ZhangH.Y.LiuJ.C.WuB.Mechanical properties and reaction mechanism of one-part geopolymer mortarsConstr. Build. Mater.202127312197310.1016/j.conbuildmat.2020.121973Open DOI
Lee, W.K.W., Van Deventer, J.S.J., Structural reorganisation of class F fly ash in alkaline silicate solutions, Colloids Surf. A: Physicochem. Eng. Asp., 2002, 211: 49–66LeeW.K.W.Van DeventerJ.S.J.Structural reorganisation of class F fly ash in alkaline silicate solutionsColloids Surf. A: Physicochem. Eng. Asp.20022114966Search in Google Scholar
Lee, W.K.W., Van Deventer, J.S.J., Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates, Langmuir, 2003, 19: 8726–8734. 10.1021/la026127eLeeW.K.W.Van DeventerJ.S.J.Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicatesLangmuir2003198726873410.1021/la026127eOpen DOI
Nematollahi, B., Sanjayan, J., Shaikh, F.U.A., Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate, Ceram. Int., 2015, 41: 5696–5704NematollahiB.SanjayanJ.ShaikhF.U.A.Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicateCeram. Int.20154156965704Search in Google Scholar
Abbas, I.S., Abed, M.H., Canakci, H., Development and characterization of eco-and user-friendly grout production via mechanochemical activation of geopolymer, J. Build. Eng., 2022, 63: 105336Abbas,I.S.AbedM.H.CanakciH.Development and characterization of eco-and user-friendly grout production via mechanochemical activation of geopolymerJ. Build. Eng.202263105336Search in Google Scholar
Hamid Abed, M., Abbas, I.S., Canakci, H., Influence of mechanochemical activation on the rheological, fresh, and mechanical properties of one-part geopolymer grout, Adv. Cem. Res., 2022, 35: 1–38Hamid AbedM.AbbasI.S.CanakciH.Influence of mechanochemical activation on the rheological, fresh, and mechanical properties of one-part geopolymer groutAdv. Cem. Res.202235138Search in Google Scholar
Matalkah, F., Xu, L., Wu, W., Soroushian, P., Mechanochemical synthesis of one-part alkali aluminosilicate hydraulic cement, Mater. Struct., 2017, 50: 1–12. 10.1617/s11527-016-0968-4MatalkahF.XuL.WuW.SoroushianP.Mechanochemical synthesis of one-part alkali aluminosilicate hydraulic cementMater. Struct.20175011210.1617/s11527-016-0968-4Open DOI
Guo, X., Xiang, D., Duan, G., Mou, P., A review of mechanochemistry applications in waste management, Waste Manag.., 2010, 30: 4–10. 10.1016/j.wasman.2009.08.017GuoX.XiangD.DuanG.MouP.A review of mechanochemistry applications in waste managementWaste Manag.20103041010.1016/j.wasman.2009.08.017Open DOI
Gupta, R., Bhardwaj, P., Mishra, D., Mudgal, M., Chouhan, R.K., Prasad, M., et al., Evolution of advanced geopolymeric cementitious material via a novel process, Adv. Cem. Res., 2017, 29: 125–134. 10.1680/jadcr.16.00113GuptaR.BhardwajP.MishraD.MudgalM.ChouhanR.K.PrasadM.Evolution of advanced geopolymeric cementitious material via a novel processAdv. Cem. Res.20172912513410.1680/jadcr.16.00113Open DOI
Mudgal, M., Chouhan, R.K., Kushwah, S., Srivastava, A.K., Enhancing reactivity and properties of fly-ash-based solid-form geopolymer via ball-milling, Emerg. Mater. Res., 2019, 9: 2–9MudgalM.ChouhanR.K.KushwahS.SrivastavaA.K.Enhancing reactivity and properties of fly-ash-based solid-form geopolymer via ball-millingEmerg. Mater. Res.2019929Search in Google Scholar
Kumar, S., Kumar, R., Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer, Ceram. Int., 2011, 37: 533–541KumarS.KumarR.Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymerCeram. Int.201137533541Search in Google Scholar
Migunthanna, J., Rajeev, P., Sanjayan, J., Investigation of waste clay brick as partial replacement in geopolymer binder, Constr. Build. Mater., 2023, 365: 130107. 10.1016/j.conbuildmat.2022.130107MigunthannaJ.RajeevP.SanjayanJ.Investigation of waste clay brick as partial replacement in geopolymer binderConstr. Build. Mater.202336513010710.1016/j.conbuildmat.2022.130107Open DOI
Sharmin, S., Sarker, P.K., Biswas, W.K., Abousnina, R.M., Javed, U., Characterization of waste clay brick powder and its effect on the mechanical properties and microstructure of geopolymer mortar, Constr. Build. Mater., 2024, 412: 134848. 10.1016/j.conbuildmat.2023.134848SharminS.SarkerP.K.BiswasW.K.AbousninaR.M.JavedU.Characterization of waste clay brick powder and its effect on the mechanical properties and microstructure of geopolymer mortarConstr. Build. Mater.202441213484810.1016/j.conbuildmat.2023.134848Open DOI
Wong, C.L., Mo, K.H., Alengaram, U.J., Yap, S.P., Mechanical strength and permeation properties of high calcium fly ash-based geopolymer containing recycled brick powder, J. Build. Eng., 2020, 32: 101655. 10.1016/j.jobe.2020.101655WongC.L.MoK.H.AlengaramU.J.YapS.P.Mechanical strength and permeation properties of high calcium fly ash-based geopolymer containing recycled brick powderJ. Build. Eng.20203210165510.1016/j.jobe.2020.101655Open DOI
Ye, T., Xiao, J., Duan, Z., Li, S., Geopolymers made of recycled brick and concrete powder – A critical review, Constr. Build. Mater., 2022, 330: 127232. 10.1016/j.conbuildmat.2022.127232YeT.XiaoJ.DuanZ.LiS.Geopolymers made of recycled brick and concrete powder – A critical reviewConstr. Build. Mater.202233012723210.1016/j.conbuildmat.2022.127232Open DOI
Wang, B., Yan, L., Fu, Q., Kasal, B., A comprehensive review on recycled aggregate and recycled aggregate concrete, Resour. Conserv. Recycl., 2021, 171: 105565. 10.1016/j.resconrec.2021.105565WangB.YanL.FuQ.KasalB.A comprehensive review on recycled aggregate and recycled aggregate concreteResour. Conserv. Recycl.202117110556510.1016/j.resconrec.2021.105565Open DOI
Tang, Q., Ma, Z., Wu, H., Wang, W., The utilization of eco-friendly recycled powder from concrete and brick waste in new concrete: A critical review, Cem. Concr. Compos., 2020, 114: 103807. 10.1016/j.cemconcomp.2020.103807TangQ.MaZ.WuH.WangW.The utilization of eco-friendly recycled powder from concrete and brick waste in new concrete: A critical reviewCem. Concr. Compos.202011410380710.1016/j.cemconcomp.2020.103807Open DOI
Abadel, A.A., Alghamdi, H., Effect of high volume tile ceramic wastes on resistance of geopolymer mortars to abrasion and freezing-thawing cycles: Experimental and deep learning modelling, Ceram. Int., 2023, 49: 15065–15081. 10.1016/j.ceramint.2023.01.089AbadelA.A.AlghamdiH.Effect of high volume tile ceramic wastes on resistance of geopolymer mortars to abrasion and freezing-thawing cycles: Experimental and deep learning modellingCeram. Int.202349150651508110.1016/j.ceramint.2023.01.089Open DOI
Albidah, A., Abadel, A., Alrshoudi, F., Altheeb, A., Abbas, H., Al-Salloum, Y., Bond strength between concrete substrate and metakaolin geopolymer repair mortars at ambient and elevated temperatures, J. Mater. Res. Technol., 2020, 9: 10732–10745. 10.1016/j.jmrt.2020.07.092AlbidahA.AbadelA.AlrshoudiF.AltheebA.AbbasH.Al-SalloumY.Bond strength between concrete substrate and metakaolin geopolymer repair mortars at ambient and elevated temperaturesJ. Mater. Res. Technol.20209107321074510.1016/j.jmrt.2020.07.092Open DOI
Naceri, A., Hamina, M.C., Use of waste brick as a partial replacement of cement in mortar, Waste Manag., 2009, 29: 2378–2384. 10.1016/j.wasman.2009.03.026NaceriA.HaminaM.C.Use of waste brick as a partial replacement of cement in mortarWaste Manag.2009292378238410.1016/j.wasman.2009.03.026Open DOI
Figiela, B., Brudny, K., Lin, W.T., Korniejenko, K., Investigation of mechanical properties and microstructure of construction-and demolition-waste-based geopolymers, J. Compos. Sci., 2022, 6: 191. 10.3390/jcs6070191FigielaB.BrudnyK.LinW.T.KorniejenkoK.Investigation of mechanical properties and microstructure of construction-and demolition-waste-based geopolymersJ. Compos. Sci.2022619110.3390/jcs6070191Open DOI
Alghamdi, H., Abadel, A.A., Khawaji, M., Alamri, M., Alabdulkarim, A., Strength performance and microstructures of alkali-activated metakaolin and GGBFS-based mortars: role of waste red brick powder incorporation, Minerals, 2023, 13: 848.AlghamdiH.AbadelA.A.KhawajiM.AlamriM.AlabdulkarimA.Strength performance and microstructures of alkali-activated metakaolin and GGBFS-based mortars: role of waste red brick powder incorporationMinerals202313848Search in Google Scholar
Abadel, A.A., Alghamdi, H., Alharbi, Y.R., Alamri, M., Khawaji, M., Abdulaziz, M.A.M., et al., Investigation of alkali-activated slag-based composite incorporating dehydrated cement powder and red mud, Materials (Basel), 2023, 16: 1551AbadelA.A.AlghamdiH.AlharbiY.R.AlamriM.KhawajiM.AbdulazizM.A.M.Investigation of alkali-activated slag-based composite incorporating dehydrated cement powder and red mudMaterials (Basel)2023161551Search in Google Scholar
Rakhimova, N.R., Rakhimov, R.Z., Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste, Mater. Des., 2015, 85: 324–331. 10.1016/j.matdes.2015.06.182RakhimovaN.R.RakhimovR.Z.Alkali-activated cements and mortars based on blast furnace slag and red clay brick wasteMater. Des.20158532433110.1016/j.matdes.2015.06.182Open DOI
Zhu, L., Zhu, Z., Reuse of clay brick waste in mortar and concrete, Adv. Mater. Sci. Eng.., 2020, 2020: 6326178. 10.1155/2020/6326178ZhuL.ZhuZ.Reuse of clay brick waste in mortar and concreteAdv. Mater. Sci. Eng.20202020632617810.1155/2020/6326178Open DOI
Xiao, J., Ma, Z., Sui, T., Akbarnezhad, A., Duan, Z., Mechanical properties of concrete mixed with recycled powder produced from construction and demolition waste, J. Clean. Prod., 2018, 188: 720–731. 10.1016/j.jclepro.2018.03.277XiaoJ.MaZ.SuiT.AkbarnezhadA.DuanZ.Mechanical properties of concrete mixed with recycled powder produced from construction and demolition wasteJ. Clean. Prod.201818872073110.1016/j.jclepro.2018.03.277Open DOI
Mahmoodi, O., Siad, H., Lachemi, M., Sahmaran, M., Synthesis and optimization of binary systems of brick and concrete wastes geopolymers at ambient environment, Constr. Build. Mater., 2021, 276: 122217. 10.1016/j.conbuildmat.2020.122217MahmoodiO.SiadH.LachemiM.SahmaranM.Synthesis and optimization of binary systems of brick and concrete wastes geopolymers at ambient environmentConstr. Build. Mater.202127612221710.1016/j.conbuildmat.2020.122217Open DOI
Marjanović, N., Komljenović, M., Baščarević, Z., Nikolić, V., Petrović, R., Physical-mechanical and microstructural properties of alkali-activated fly ash-blast furnace slag blends, Ceram. Int., 2015, 41: 1421–1435. 10.1016/j.ceramint.2014.09.075MarjanovićN.KomljenovićM.BaščarevićZ.NikolićV.PetrovićR.Physical-mechanical and microstructural properties of alkali-activated fly ash-blast furnace slag blendsCeram. Int.2015411421143510.1016/j.ceramint.2014.09.075Open DOI
Palacios, M., Gismera, S., Alonso, M.M., d’Espinose de Lacaillerie, J.B., Lothenbach, B., Favier, A., et al., Early reactivity of sodium silicate-activated slag pastes and its impact on rheological properties, Cem. Concr. Res., 2021, 140: 106302. 10.1016/j.cemconres.2020.106302PalaciosM.GismeraS.AlonsoM.M.d’Espinose de LacaillerieJ.B.LothenbachB.FavierA.Early reactivity of sodium silicate-activated slag pastes and its impact on rheological propertiesCem. Concr. Res.202114010630210.1016/j.cemconres.2020.106302Open DOI
Lu, C., Zhang, Z., Shi, C., Li, N., Jiao, D., Yuan, Q., Rheology of alkali-activated materials: A review, Cem. Concr. Compos., 2021, 121: 104061. 10.1016/j.cemconcomp.2021.104061LuC.ZhangZ.ShiC.LiN.JiaoD.YuanQ.Rheology of alkali-activated materials: A reviewCem. Concr. Compos.202112110406110.1016/j.cemconcomp.2021.104061Open DOI
Ye, H., Radlińska, A., Shrinkage mitigation strategies in alkali-activated slag, Cem. Concr. Res., 2017, 101: 131–143. 10.1016/j.cemconres.2017.08.025YeH.RadlińskaA.Shrinkage mitigation strategies in alkali-activated slagCem. Concr. Res.201710113114310.1016/j.cemconres.2017.08.025Open DOI
Ye, H., Radlińska, A., Shrinkage mechanisms of alkali-activated slag, Cem. Concr. Res., 2016, 88: 126–135. 10.1016/j.cemconres.2016.07.001YeH.RadlińskaA.Shrinkage mechanisms of alkali-activated slagCem. Concr. Res.20168812613510.1016/j.cemconres.2016.07.001Open DOI
Hojati, M., Radlin, A., Radlińska, A., Shrinkage and strength development of alkali-activated fly ash-slag binary cements, Constr. Build. Mater., 2017, 150: 808–816. 10.1016/j.conbuildmat.2017.06.040HojatiM.RadlinA.RadlińskaA.Shrinkage and strength development of alkali-activated fly ash-slag binary cementsConstr. Build. Mater.201715080881610.1016/j.conbuildmat.2017.06.040Open DOI
Zawrah, M.F., Gado, R.A., Feltin, N., Ducourtieux, S., Devoille, L., Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production, Process. Saf. Environ. Prot., 2016, 103: 237–251. 10.1016/j.psep.2016.08.001ZawrahM.F.GadoR.A.FeltinN.DucourtieuxS.DevoilleL.Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer productionProcess. Saf. Environ. Prot.201610323725110.1016/j.psep.2016.08.001Open DOI
Fořt, J., Novotný, R., Vejmelková, E., Trník, A., Rovnaníková, P., Keppert, M., et al., Characterization of geopolymers prepared using powdered brick, J. Mater. Res. Technol., 2019, 8: 6253–6261. 10.1016/j.jmrt.2019.10.019FořtJ.NovotnýR.VejmelkováE.TrníkA.RovnaníkováP.KeppertM.Characterization of geopolymers prepared using powdered brickJ. Mater. Res. Technol.201986253626110.1016/j.jmrt.2019.10.019Open DOI
Abed, F.H., Zareei, S.A., Kurdi, N.H., Emami, A., Enhancing geopolymer binder reactivity and performance via mechanochemical activation: A comprehensive study of rheological, mechanical, and microstructural properties, Constr. Build. Mater., 2024, 430: 136456. 10.1016/j.conbuildmat.2024.136456AbedF.H.ZareeiS.A.KurdiN.H.EmamiA.Enhancing geopolymer binder reactivity and performance via mechanochemical activation: A comprehensive study of rheological, mechanical, and microstructural propertiesConstr. Build. Mater.202443013645610.1016/j.conbuildmat.2024.136456Open DOI
Hamid Abed, M., Sabbar Abbas, I., Hamed, M., Canakci, H., Rheological, fresh, and mechanical properties of mechanochemically activated geopolymer grout: A comparative study with conventionally activated geopolymer grout, Constr. Build. Mater., 2022, 322: 126338. 10.1016/j.conbuildmat.2022.126338Hamid AbedM.Sabbar AbbasI.HamedM.CanakciH.Rheological, fresh, and mechanical properties of mechanochemically activated geopolymer grout: A comparative study with conventionally activated geopolymer groutConstr. Build. Mater.202232212633810.1016/j.conbuildmat.2022.126338Open DOI
Raghuraman, P., Raman, R.R., Pitchumani, B., Studies in fine grinding in an attritor mill, In: Developments in mineral processing, Elsevier, 2000, pp. C4–C94RaghuramanP.RamanR.R.PitchumaniB.Studies in fine grinding in an attritor millIn:Developments in mineral processingElsevier2000pp. C4C94Search in Google Scholar
Ilcan, H., Sahin, O., Kul, A., Yildirim, G., Sahmaran, M., Rheological properties and compressive strength of construction and demolition waste-based geopolymer mortars for 3D-Printing, Constr. Build. Mater., 2022, 328: 127114IlcanH.SahinO.KulA.YildirimG.SahmaranM.Rheological properties and compressive strength of construction and demolition waste-based geopolymer mortars for 3D-PrintingConstr. Build. Mater.2022328127114Search in Google Scholar
Mahmoodi, O., Siad, H., Lachemi, M., Dadsetan, S., Sahmaran, M., Optimization of brick waste-based geopolymer binders at ambient temperature and pre-targeted chemical parameters, J. Clean. Prod., 2020, 268: 122285. 10.1016/j.jclepro.2020.122285MahmoodiO.SiadH.LachemiM.DadsetanS.SahmaranM.Optimization of brick waste-based geopolymer binders at ambient temperature and pre-targeted chemical parametersJ. Clean. Prod.202026812228510.1016/j.jclepro.2020.122285Open DOI
Kantro, D.L., Influence of water-reducing admixtures on properties of cement paste – a miniature slump test, Cem. Concr. Aggreg., 1980, 2: 95–102KantroD.L.Influence of water-reducing admixtures on properties of cement paste – a miniature slump testCem. Concr. Aggreg.1980295102Search in Google Scholar
Güllü, H., Ali Agha, A., The rheological, fresh and strength effects of cold-bonded geopolymer made with metakaolin and slag for grouting, Constr. Build. Mater., 2021, 274: 122091. 10.1016/j.conbuildmat.2020.122091GüllüH.Ali AghaA.The rheological, fresh and strength effects of cold-bonded geopolymer made with metakaolin and slag for groutingConstr. Build. Mater.202127412209110.1016/j.conbuildmat.2020.122091Open DOI
ASTM, C. Standard test methods for time of setting of hydraulic cement by Vicat needle. ASTM International, West Conshohocken, PA, 2008, C191-08ASTMC.Standard test methods for time of setting of hydraulic cement by Vicat needle.ASTM InternationalWest Conshohocken, PA2008C191-08Search in Google Scholar
Astm, C. 942. Standard test method for compressive strengths of grouts for preplaced-aggregate concrete in the laboratory, Annual Book of ASTM Standards, 2008.AstmC.942. Standard test method for compressive strengths of grouts for preplaced-aggregate concrete in the laboratory, Annual Book of ASTM Standards2008Search in Google Scholar
ASTM, A. Standard test method of unconfined compressive strength of intact rock core specimens, ASTM Publication, 1986.ASTMA.Standard test method of unconfined compressive strength of intact rock core specimensASTM Publication1986Search in Google Scholar
Amini, O., Ghasemi, M., Laboratory study of the effects of using magnesium slag on the geotechnical properties of cement stabilized soil, Constr. Build. Mater., 2019, 223: 409–420AminiO.GhasemiM.Laboratory study of the effects of using magnesium slag on the geotechnical properties of cement stabilized soilConstr. Build. Mater.2019223409420Search in Google Scholar
Baalamurugan, J., Ganesh Kumar, V., Stalin Dhas, T., Taran, S., Nalini, S., Karthick, V., et al., Utilization of induction furnace steel slag based iron oxide nanocomposites for antibacterial studies, SN Appl. Sci., 2021, 3: 1–8. 10.1007/s42452-021-04299-9BaalamuruganJ.Ganesh KumarV.Stalin DhasT.TaranS.NaliniS.KarthickV.Utilization of induction furnace steel slag based iron oxide nanocomposites for antibacterial studiesSN Appl. Sci.202131810.1007/s42452-021-04299-9Open DOI
Hwang, C.L., Damtie Yehualaw, M., Vo, D.H., Huynh, T.P., Development of high-strength alkali-activated pastes containing high volumes of waste brick and ceramic powders, Constr. Build. Mater., 2019, 218: 519–529. 10.1016/j.conbuildmat.2019.05.143HwangC.L.Damtie YehualawM.VoD.H.HuynhT.P.Development of high-strength alkali-activated pastes containing high volumes of waste brick and ceramic powdersConstr. Build. Mater.201921851952910.1016/j.conbuildmat.2019.05.143Open DOI
Hamid Abed, M., Hamid Abed, F., Alireza Zareei, S., Sabbar Abbas, I., Canakci, H., Kurdi, N.H., et al., Experimental feasibility study of using eco- and user-friendly mechanochemically activated slag/fly ash geopolymer for soil stabilization, Clean. Mater., 2024, 11: 100226. 10.1016/j.clema.2024.100226Hamid AbedM.Hamid AbedF.Alireza ZareeiS.Sabbar AbbasI.Canakci,H.KurdiN.H.Experimental feasibility study of using eco- and user-friendly mechanochemically activated slag/fly ash geopolymer for soil stabilizationClean. Mater.20241110022610.1016/j.clema.2024.100226Open DOI
Chen, M.Z., Lin, J.T., Wu, S.P., Liu, C.H., Utilization of recycled brick powder as alternative filler in asphalt mixture, Constr. Build. Mater., 2011, 25: 1532–1536. 10.1016/j.conbuildmat.2010.08.005ChenM.Z.LinJ.T.WuS.P.LiuC.H.Utilization of recycled brick powder as alternative filler in asphalt mixtureConstr. Build. Mater.2011251532153610.1016/j.conbuildmat.2010.08.005Open DOI
Wang, Y., Wang, M., Wang, H., Dun, Z., Ren, L., Experimental research on application of waste concrete powder–waste brick powder–cement grout for foundation reinforcement in mining goaf, Materials (Basel), 2023, 16: 6075. 10.3390/ma16186075WangY.WangM.WangH.DunZ.RenL.Experimental research on application of waste concrete powder–waste brick powder–cement grout for foundation reinforcement in mining goafMaterials (Basel)202316607510.3390/ma16186075Open DOI
Ahmed, J.K., Atmaca, N., Khoshnaw, G.J., Building a sustainable future: An experimental study on recycled brick waste powder in engineered geopolymer composites, Case Stud. Constr. Mater., 2024, 20: e02863. 10.1016/j.cscm.2024.e02863AhmedJ.K.AtmacaN.KhoshnawG.J.Building a sustainable future: An experimental study on recycled brick waste powder in engineered geopolymer compositesCase Stud. Constr. Mater.202420e0286310.1016/j.cscm.2024.e02863Open DOI
ASTM International. ASTM C1437-15 Standard test method for flow of hydraulic cement mortar, ASTM International, West Conshohocken, PA, USA, 2015.ASTM InternationalASTM C1437-15 Standard test method for flow of hydraulic cement mortar, ASTM International, West Conshohocken, PA, USA2015Search in Google Scholar
Hamid Abed, M., Hamid Abed, F., Alireza Zareei, S., Sabbar Abbas, I., Canakci, H., Kurdi, N.H., et al., Experimental feasibility study of eco- and user-friendly mechanochemically activated slag/fly ash geopolymer for soil stabilization, Clean. Mater., 2024, 11: 100226. 10.1016/j.clema.2024.100226Hamid AbedM.Hamid AbedF.Alireza ZareeiS.Sabbar AbbasI.CanakciH.KurdiN.H.Experimental feasibility study of eco- and user-friendly mechanochemically activated slag/fly ash geopolymer for soil stabilizationClean. Mater.20241110022610.1016/j.clema.2024.100226Open DOI
Hamid Abed, M., Hamid Abed, F., Zareei, S.A., Abbas, I.S., Canakci, H., Kurdi, N.H., Mechanical and durability performance of eco-friendly geopolymer-stabilized soil, Proc. Inst. Civ. Eng. Gr. Improv., 2024, 1–17. 10.1680/jgrim.23.00037Hamid AbedM.Hamid AbedF.ZareeiS.A.AbbasI.S.CanakciH.KurdiN.H.Mechanical and durability performance of eco-friendly geopolymer-stabilized soilProc. Inst. Civ. Eng. Gr. Improv.202411710.1680/jgrim.23.00037Open DOI
Abed, M.H., Abbas, I.S., Development and assessment of eco- and user-friendly geopolymeric stabilizers for sustainable soil improvement, Clean. Waste Syst., 2024, 9: 100170. 10.1016/j.clwas.2024.100170AbedM.H.AbbasI.S.Development and assessment of eco- and user-friendly geopolymeric stabilizers for sustainable soil improvementClean. Waste Syst.2024910017010.1016/j.clwas.2024.100170Open DOI
Zhang, J., Li, S., Li, Z., Zhang, Q., Li, H., Du, J., et al., Properties of fresh and hardened geopolymer-based grouts, Ceram. Silik., 2019, 63: 164–173. 10.13168/cs.2019.0008ZhangJ.LiS.LiZ.ZhangQ.LiH.DuJ.Properties of fresh and hardened geopolymer-based groutsCeram. Silik.20196316417310.13168/cs.2019.0008Open DOI
Abou-Zeid, M., Fowler, D.W., Nawy, E.G., Allen, J.H., Halvorsen, G.T., Poston, R.W., et al., Control of cracking in concrete structures, Rep. ACI Comm.., 2001, 224: 12–16Abou-ZeidM.FowlerD.W.NawyE.G.AllenJ.H.HalvorsenG.T.PostonR.W.Control of cracking in concrete structuresRep. ACI Comm.20012241216Search in Google Scholar
Samantasinghar, S., Singh, S.P., Fresh and hardened properties of fly ash–slag blended geopolymer paste and mortar, Int. J. Concr. Struct. Mater., 2019, 13: 1–12. 10.1186/s40069-019-0360-1SamantasingharS.SinghS.P.Fresh and hardened properties of fly ash–slag blended geopolymer paste and mortarInt. J. Concr. Struct. Mater.20191311210.1186/s40069-019-0360-1Open DOI
Nath, P., Sarker, P.K., Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition, Constr. Build. Mater., 2014, 66: 163–171NathP.SarkerP.K.Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient conditionConstr. Build. Mater.201466163171Search in Google Scholar
Kumar, S., Kumar, R., Mehrotra, S.P., Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer, J. Mater. Sci., 2010, 45: 607–615. 10.1007/s10853-009-3934-5KumarS.KumarR.MehrotraS.P.Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymerJ. Mater. Sci.20104560761510.1007/s10853-009-3934-5Open DOI
Kato, K., Xin, Y., Hitomi, T., Shirai, T., Surface modification of fly ash by mechano-chemical treatment, Ceram. Int., 2019, 45: 849–853. 10.1016/j.ceramint.2018.09.254KatoK.XinY.HitomiT.ShiraiT.Surface modification of fly ash by mechano-chemical treatmentCeram. Int.20194584985310.1016/j.ceramint.2018.09.254Open DOI
Li, H., Xu, D., Feng, S., Shang, B., Microstructure and performance of fly ash micro-beads in cementitious material system, Constr. Build. Mater., 2014, 52: 422–427. 10.1016/j.conbuildmat.2013.11.040LiH.XuD.FengS.ShangB.Microstructure and performance of fly ash micro-beads in cementitious material systemConstr. Build. Mater.20145242242710.1016/j.conbuildmat.2013.11.040Open DOI
Marjanović, N., Komljenović, M., Baščarević, Z., Nikolić, V., Improving reactivity of fly ash and properties of ensuing geopolymers through mechanical activation, Constr. Build. Mater., 2014, 57: 151–162. 10.1016/j.conbuildmat.2014.01.095MarjanovićN.KomljenovićM.BaščarevićZ.NikolićV.Improving reactivity of fly ash and properties of ensuing geopolymers through mechanical activationConstr. Build. Mater.20145715116210.1016/j.conbuildmat.2014.01.095Open DOI
Tho-In, T., Sata, V., Boonserm, K., Chindaprasirt, P., Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash, J. Clean. Prod., 2016, 172: 2892–2898. 10.1016/j.jclepro.2017.11.125Tho-InT.SataV.BoonsermK.ChindaprasirtP.Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ashJ. Clean. Prod.20161722892289810.1016/j.jclepro.2017.11.125Open DOI
Liang, G., Zhu, H., Zhang, Z., Wu, Q., Du, J., Investigation of the waterproof property of alkali-activated metakaolin geopolymer added with rice husk ash, J. Clean. Prod., 2019, 230: 603–612. 10.1016/j.jclepro.2019.05.111LiangG.ZhuH.ZhangZ.WuQ.DuJ.Investigation of the waterproof property of alkali-activated metakaolin geopolymer added with rice husk ashJ. Clean. Prod.201923060361210.1016/j.jclepro.2019.05.111Open DOI
Athira, V.S., Bahurudeen, A., Saljas, M., Jayachandran, K., Influence of different curing methods on mechanical and durability properties of alkali activated binders, Constr. Build. Mater., 2021, 299: 123963. 10.1016/j.conbuildmat.2021.123963AthiraV.S.BahurudeenA.SaljasM.JayachandranK.Influence of different curing methods on mechanical and durability properties of alkali activated bindersConstr. Build. Mater.202129912396310.1016/j.conbuildmat.2021.123963Open DOI
Fořt, J., Mildner, M., Keppert, M., Pommer, V., Černý, R., Experimental and environmental analysis of high-strength geopolymer based on waste bricks and blast furnace slag, Polymers (Basel), 2023, 15: 3092. 10.3390/polym15143092FořtJ.MildnerM.KeppertM.PommerV.ČernýR.Experimental and environmental analysis of high-strength geopolymer based on waste bricks and blast furnace slagPolymers (Basel)202315309210.3390/polym15143092Open DOI
Nath, S.K., Kumar, S., Influence of iron making slags on strength and microstructure of fly ash geopolymer, Constr. Build. Mater., 2013, 38: 924–930. 10.1016/j.conbuildmat.2012.09.070NathS.K.KumarS.Influence of iron making slags on strength and microstructure of fly ash geopolymerConstr. Build. Mater.20133892493010.1016/j.conbuildmat.2012.09.070Open DOI
Nath, S.K., Kumar, S., Influence of granulated silico-manganese slag on compressive strength and microstructure of ambient cured alkali-activated fly ash binder, Waste Biomass Valoriz., 2019, 10: 2045–2055. 10.1007/s12649-018-0213-1NathS.K.KumarS.Influence of granulated silico-manganese slag on compressive strength and microstructure of ambient cured alkali-activated fly ash binderWaste Biomass Valoriz.2019102045205510.1007/s12649-018-0213-1Open DOI
Ma, Y., Hu, J., Ye, G., The pore structure and permeability of alkali activated fly ash, Fuel, 2013, 104: 771–780. 10.1016/j.fuel.2012.05.034MaY.HuJ.YeG.The pore structure and permeability of alkali activated fly ashFuel201310477178010.1016/j.fuel.2012.05.034Open DOI
Zheng, L., Wang, W., Shi, Y., The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer, Chemosphere, 2010, 79: 665–671. 10.1016/j.chemosphere.2010.02.018ZhengL.WangW.ShiY.The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymerChemosphere20107966567110.1016/j.chemosphere.2010.02.018Open DOI
Zhang, J., Provis, J.L., Feng, D., van Deventer, J.S.J., Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+, J. Hazard. Mater., 2008, 157: 587–598. 10.1016/j.jhazmat.2008.01.053ZhangJ.ProvisJ.L.FengD.van DeventerJ.S.J.Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+J. Hazard. Mater.200815758759810.1016/j.jhazmat.2008.01.053Open DOI
Izquierdo, M., Querol, X., Davidovits, J., Antenucci, D., Nugteren, H., Fernández-Pereira, C., Coal fly ash-slag-based geopolymers: Microstructure and metal leaching, J. Hazard. Mater., 2009, 166: 561–566. 10.1016/j.jhazmat.2008.11.063IzquierdoM.QuerolX.DavidovitsJ.AntenucciD.NugterenH.Fernández-PereiraC.Coal fly ash-slag-based geopolymers: Microstructure and metal leachingJ. Hazard. Mater.200916656156610.1016/j.jhazmat.2008.11.063Open DOI
Provis, J.L., Myers, R.J., White, C.E., Rose, V., Van Deventer, J.S.J., X-ray microtomography shows pore structure and tortuosity in alkali-activated binders, Cem. Concr. Res., 2012, 42: 855–864. 10.1016/j.cemconres.2012.03.004ProvisJ.L.MyersR.J.WhiteC.E.RoseV.Van DeventerJ.S.J.X-ray microtomography shows pore structure and tortuosity in alkali-activated bindersCem. Concr. Res.20124285586410.1016/j.cemconres.2012.03.004Open DOI
Hamid, M., Abbas, I.S., Canakci, H., Effect of glass powder on the rheological and mechanical properties of slag-based mechanochemical activation geopolymer grout, Eur. J. Environ. Civ. Eng., 2022, 27: 1–25. 10.1080/19648189.2022.2145374HamidM.AbbasI.S.CanakciH.Effect of glass powder on the rheological and mechanical properties of slag-based mechanochemical activation geopolymer groutEur. J. Environ. Civ. Eng.20222712510.1080/19648189.2022.2145374Open DOI
Wang, W., Wu, H., Ma, Z., Wu, R., Using eco-friendly recycled powder from CDW to prepare strain hardening cementitious composites (SHCC) and properties determination, Materials (Basel), 2020, 13: 1143. 10.3390/ma13051143WangW.WuH.MaZ.WuR.Using eco-friendly recycled powder from CDW to prepare strain hardening cementitious composites (SHCC) and properties determinationMaterials (Basel)202013114310.3390/ma13051143Open DOI
Ismail, I., Bernal, S.A., Provis, J.L., San Nicolas, R., Hamdan, S., Van Deventer, J.S.J., Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash, Cem. Concr. Compos., 2014, 45: 125–135. 10.1016/j.cemconcomp.2013.09.006IsmailI.BernalS.A.ProvisJ.L.San NicolasR.HamdanS.Van DeventerJ.S.J.Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ashCem. Concr. Compos.20144512513510.1016/j.cemconcomp.2013.09.006Open DOI
Gupta, R., Bhardwaj, P., Mishra, D., Prasad, M., Amritphale, S.S., Formulation of mechanochemically evolved fly ash based hybrid inorganic–organic geopolymers with multilevel characterization, J. Inorg. Organomet. Polym. Mater., 2017, 27: 385–398. 10.1007/s10904-016-0461-0GuptaR.BhardwajP.MishraD.PrasadM.AmritphaleS.S. Formulation of mechanochemically evolved fly ash based hybrid inorganic–organic geopolymers with multilevel characterizationJ. Inorg. Organomet. Polym. Mater.20172738539810.1007/s10904-016-0461-0Open DOI
Gupta, R., Bhardwaj, P., Deshmukh, K., Mishra, D., Prasad, M., Amritphale, S.S., Development and characterization of inorganic-organic (Si-O-Al) hybrid geopolymeric precursors via solid state method, Silicon, 2019, 11: 221–232GuptaR.BhardwajP.DeshmukhK.MishraD.PrasadM.AmritphaleS.S.Development and characterization of inorganic-organic (Si-O-Al) hybrid geopolymeric precursors via solid state methodSilicon201911221232Search in Google Scholar
Navrátilová, E., Rovnaníková, P., Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars, Constr. Build. Mater., 2016, 120: 530–539. 10.1016/j.conbuildmat.2016.05.062NavrátilováE.RovnaníkováP.Pozzolanic properties of brick powders and their effect on the properties of modified lime mortarsConstr. Build. Mater.201612053053910.1016/j.conbuildmat.2016.05.062Open DOI
U.S. Epa, National primary drinking water standards, Off. Water, United States Environ. Prot. Agency, Washington, DC, 2003U.S. EpaNational primary drinking water standards, Off. Water, United States Environ. Prot. Agency, Washington, DC2003Search in Google Scholar
Wartman, J., Grubb, D.G., Nasim, A.S.M., Select engineering characteristics of crushed glass, J. Mater. Civ. Eng., 2004, 16: 526–539WartmanJ.GrubbD.G.NasimA.S.M.Select engineering characteristics of crushed glassJ. Mater. Civ. Eng.200416526539Search in Google Scholar
Cheng, K.Y., Bishop, P., Metals distribution in solidified/stabilized waste forms after leaching, Hazard. Waste Hazard. Mater., 1992, 9: 163–171ChengK.Y.BishopP.Metals distribution in solidified/stabilized waste forms after leachingHazard. Waste Hazard. Mater.19929163171Search in Google Scholar
Napia, C., Sinsiri, T., Jaturapitakkul, C., Chindaprasirt, P., Leaching of heavy metals from solidified waste using Portland cement and zeolite as a binder, Waste Manag.., 2012, 32: 1459–1467NapiaC.SinsiriT.JaturapitakkulC.ChindaprasirtP.Leaching of heavy metals from solidified waste using Portland cement and zeolite as a binderWaste Manag.20123214591467Search in Google Scholar
Peralta, G.L., Ballesteros, F., Cepeda, M., Treatment and disposal of heavy metal waste using cementitious solidification, In: PACIFIC BASIN, Conference On Hazardous Waste, 1992PeraltaG.L.BallesterosF.CepedaM.Treatment and disposal of heavy metal waste using cementitious solidificationIn:PACIFIC BASIN, Conference On Hazardous Waste1992Search in Google Scholar
Erdem, E., Karapinar, N., Donat, R., The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci., 2004, 280: 309–314ErdemE.KarapinarN.DonatR.The removal of heavy metal cations by natural zeolitesJ. Colloid Interface Sci.2004280309314Search in Google Scholar
Abed, M.H., Abbas, I.S., Mohmmad, S.H., Saygili, A., Agha, A.A., Performance of soils stabilized with eco-friendly mechanochemical geopolymeric activators, Geotech. Geol. Eng., 2025, 43: 117. 10.1007/s10706-025-03073-7.Abed M.H.AbbasI.S.MohmmadS.H.SaygiliA.AghaA.A.Performance of soils stabilized with eco-friendly mechanochemical geopolymeric activators, GeotechGeol. Eng.20254311710.1007/s10706-025-03073-7Open DOISearch in Google Scholar