Otwarty dostęp

Evaluation of microstructural and mechanical qualities in optimised TIG-welded SDSS 2507 joints

, , , ,  oraz   
31 gru 2024

Zacytuj
Pobierz okładkę

Figure 1

Layout of the research.
Layout of the research.

Figure 2

(a) TIG experimental setup. SDSS plate welded by the TIG process: (b) top bead and (c) bottom bead.
(a) TIG experimental setup. SDSS plate welded by the TIG process: (b) top bead and (c) bottom bead.

Figure 3

(a) UTM for tensile tests and (b) tensile test sample before fracture.
(a) UTM for tensile tests and (b) tensile test sample before fracture.

Figure 4

Contribution of each parameter: (a) UTS, (b) elongation, and (c) microhardness.
Contribution of each parameter: (a) UTS, (b) elongation, and (c) microhardness.

Figure 5

Macrostructure of the TIG welded joint of the SDSS sheet.
Macrostructure of the TIG welded joint of the SDSS sheet.

Figure 6

Microstructure of (a) base metal and HAZ, (b) FZ, and (c) enlarged view of FZ.
Microstructure of (a) base metal and HAZ, (b) FZ, and (c) enlarged view of FZ.

Figure 7

SEM images of (a) base metal and of welded joint’s (b) HAZ and (c) FZ.
SEM images of (a) base metal and of welded joint’s (b) HAZ and (c) FZ.

Figure 8

Elemental mapping of the base metal and welded joint.
Elemental mapping of the base metal and welded joint.

Figure 9

Tensile test samples: (a) base metal, (b) broken base metal, (c) TIG welded, and (d) broken TIG welded joint.
Tensile test samples: (a) base metal, (b) broken base metal, (c) TIG welded, and (d) broken TIG welded joint.

Figure 10

Stress–strain diagram for the SDSS base metal and welded joint tensile test sample.
Stress–strain diagram for the SDSS base metal and welded joint tensile test sample.

Figure 11

Bar graph of comparative study of base metal’s and welded joint’s (a) UTS, (b) elongation, (c) yield strength, and (d) weld efficiency.
Bar graph of comparative study of base metal’s and welded joint’s (a) UTS, (b) elongation, (c) yield strength, and (d) weld efficiency.

Figure 12

Fracture surfaces for the tensile test specimens with the (a) base metal, (b) a close-up view of the base metal fracture surface, (c) welded joint, and (d) a close-up view of the welded joint fracture surface.
Fracture surfaces for the tensile test specimens with the (a) base metal, (b) a close-up view of the base metal fracture surface, (c) welded joint, and (d) a close-up view of the welded joint fracture surface.

Figure 13

Micro-hardness values in the (a) base metal, HAZ, and FZ and (b) SEM image of indentation on the base metal.
Micro-hardness values in the (a) base metal, HAZ, and FZ and (b) SEM image of indentation on the base metal.

Figure 14

Micro-hardness variation with heat input.
Micro-hardness variation with heat input.

Response table for S/N ratios for UTS (larger is better)_

Level Welding current (A) Arc potential (V) Feed rate (mm/min) Argon gas flow rate (L/min)
1 57.51 57.57 57.56 57.57
2 57.54 57.57 57.59 57.57
3 57.60 57.56 57.56 57.59
4 57.60 57.59 57.56 57.57
5 57.61 57.58 57.59 57.57
Delta 0.10 0.04 0.03 0.02
Rank 1 2 3 4

Chemical structure of SDSS_

Element Cr Mo Si N Ni O C Cu Fe
Weight (%) 25.7 3.01 0.32 0.23 7.3 0.9 0.1 0.21 Balance

L25 array for TIG parameters and their corresponding output_ Italic and bold text shows optimized parameters of welded joint_

Experiment Factors Outputs
Welding current (A) Arc potential (V) Feed rate (mm/min) Argon gas flow rate (LPM) UTS (MPa) Elongation (%) Hardness (HV) Heat input (kJ/mm)
1 70 12 80 8 754 22.7 330 0.567
2 70 13 90 10 753 22.6 331 0.546
3 70 14 100 12 752 23.4 332 0.529
4 70 15 110 14 751 22.2 332 0.515
5 70 16 120 16 755 21.5 334 0.504
6 72 12 90 12 755 22.5 335 0.518
7 72 13 100 14 756 21.8 334 0.505
8 72 14 110 16 751 22.6 335 0.495
9 72 15 120 8 754 29.7 336 0.486
10 72 16 80 10 752 21.2 337 0.778
11 75 12 90 16 755 21.3 323 0.540
12 75 13 100 8 756 23.9 331 0.527
13 75 14 110 10 754 22.8 332 0.515
14 75 15 120 12 789 24.7 325 0.506
15 75 16 90 14 763 25.7 322 0.720
16 77 12 110 10 761 24.4 324 0.454
17 77 13 120 12 758 23.2 340 0.450
18 77 14 80 14 759 23.6 340 0.728
19 77 15 90 16 763 25.6 324 0.693
20 77 16 100 8 757 23.8 326 0.665
21 80 12 110 14 758 22.2 327 0.471
22 80 13 120 16 765 23.7 338 0.468
23 80 14 90 8 762 23.4 326 0.672
24 80 15 100 10 768 23.6 327 0.648
25 80 16 110 12 758 23.8 328 0.628

Response table for S/N ratios for micro-hardness (smaller is better)_

Level Welding current (A) Arc potential (V) Feed rate (mm/min) Argon gas flow rate (L/min)
1 −48.86 −48.95 −48.95 −48.96
2 −48.87 −48.93 −48.92 −48.97
3 −48.95 −48.96 −48.96 −48.95
4 −49.01 −48.94 −48.96 −48.93
5 −49.00 −48.92 −48.93 −48.90
Delta 0.15 0.04 0.04 0.07
Rank 1 3 4 2

Ferrite percentage of SDSS in the FZ and HAZ with varying heat input_

Heat input (kJ/mm) Top weld Root weld Top HAZ Root HAZ
0.546 66 33 62 58
0.486 57 30 59 57
0.506 50 27 58 55
0.495 48 26 55 52

Mechanical properties of SDSS grade 2507 [37]_

Grade UTS (MPa) 0.2% proof yield strength (MPa) Minimum elongation (%) Hardness
Rockwell hardness Brinell hardness
2507 800–850 550–560 14–15 31–33 309–312

Results of ANOVA_

Source DF Adj SS Adj MS F-value P-value Contribution (%)
Welding current 4 309.75 77.436 6.12 0.015 46.95
Arc potential 4 18.43 4.607 0.36 0.828 10.25
Feed rate 4 41.63 10.406 0.82 0.546 13.26
Argon gas flow rate 4 18.52 4.631 0.37 0.826 24.56
Error 8 101.15 12.644 4.98
Total 24 490.26

Response table for S/N ratios for elongation (%) (larger is better)_

Level Welding current (A) Arc potential (V) Feed rate (mm/min) Argon gas flow rate (L/min)
1 26.60 27.00 26.91 26.97
2 26.80 27.04 27.21 27.03
3 27.32 26.91 26.95 27.25
4 27.28 27.26 26.96 27.07
5 27.35 27.14 27.25 27.03
Delta 0.75 0.35 0.34 0.29
Rank 1 2 3 4

TIG process settings_

S. No TIG parameters Range
1 Welding current intensity (A) 70–80
2 Arc potential (V) 12–16
3 Feed rate (mm/min) 80–120
4 Argon gas flow rate (L/min) 8–16

Process parameters for the TIG bead on plate_

TIG parameters Unit Level
1 2 3 4 5
Welding current A 70 72 75 77 80
Arc potential V 12 13 14 15 16
Feed rate mm/min 80 90 100 110 120
Argon gas flow rate L/mm 8 10 12 14 16