Otwarty dostęp

Influence of elevated temperature on the engineering properties of ultra-high-performance fiber-reinforced concrete


Zacytuj

Ding M, Yu R, Feng Y, Wang S, Zhou F, Shui Z, Gao X, He Y, Chen L. Possibility and advantages of producing an ultra-high performance concrete (UHPC) with ultra-low cement content. Constr Build. Mater. 2021; 273:122023. https://doi.org/10.1016/j.conbuildmat.2020.122023. Ding M Yu R Feng Y Wang S Zhou F Shui Z Gao X He Y Chen L . Possibility and advantages of producing an ultra-high performance concrete (UHPC) with ultra-low cement content . Constr Build. Mater . 2021 ; 273 : 122023 . https://doi.org/ 10.1016/j.conbuildmat.2020.122023 . Open DOISearch in Google Scholar

Yu R, Spiesz P, Brouwers HJH. Development of an ecofriendly ultra-high performance concrete (UHPC) with efficient cement and mineral admixtures uses. 2014. Yu R Spiesz P Brouwers HJH . Development of an ecofriendly ultra-high performance concrete (UHPC) with efficient cement and mineral admixtures uses . 2014 . Search in Google Scholar

Li Y, Tan KH, Yang EH. Influence of aggregate size and inclusion of polypropylene and steel fibers on the hot permeability of ultra-high performance concrete (UHPC) at elevated temperature. Constr Build Mater. 2018; 169:629–637. https://doi.org/10.1016/j.conbuildmat.2018.01.105. Li Y Tan KH Yang EH . Influence of aggregate size and inclusion of polypropylene and steel fibers on the hot permeability of ultra-high performance concrete (UHPC) at elevated temperature . Constr Build Mater . 2018 ; 169 : 629 637 . https://doi.org/ 10.1016/j.conbuildmat.2018.01.105 . Open DOISearch in Google Scholar

Arora A, Yao Y, Mobasher B, Neithalath N. Fundamental insights into the compressive and flexural response of binder- and aggregate-optimized ultra-high performance concrete (UHPC). Cem Concr Compos. 2019; 98:1–13. https://doi.org/10.1016/j.cemconcomp.2019.01.015. Arora A Yao Y Mobasher B Neithalath N . Fundamental insights into the compressive and flexural response of binder- and aggregate-optimized ultra-high performance concrete (UHPC) . Cem Concr Compos . 2019 ; 98 : 1 13 . https://doi.org/ 10.1016/j.cemconcomp.2019.01.015 . Open DOISearch in Google Scholar

Hassan M, Wille K. Experimental impact analysis on ultra-high performance concrete (UHPC) for achieving stress equilibrium (SE) and constant strain rate (CSR) in Split Hopkinson pressure bar (SHPB) using pulse shaping technique. Constr Build Mater. 2017; 144:747–757. https://doi.org/10.1016/j.conbuildmat.2017.03.185. Hassan M Wille K . Experimental impact analysis on ultra-high performance concrete (UHPC) for achieving stress equilibrium (SE) and constant strain rate (CSR) in Split Hopkinson pressure bar (SHPB) using pulse shaping technique . Constr Build Mater . 2017 ; 144 : 747 757 . https://doi.org/ 10.1016/j.conbuildmat.2017.03.185 . Open DOISearch in Google Scholar

Yang J, Chen B, Su J, Xu G, Zhang D, Zhou J. Effects of fibers on the mechanical properties of UHPC: a review. J Traffic Transp Eng. 2022; 9:363–387. https://doi.org/10.1016/j.jtte.2022.05.001. Yang J Chen B Su J Xu G Zhang D Zhou J . Effects of fibers on the mechanical properties of UHPC: a review . J Traffic Transp Eng . 2022 ; 9 : 363 387 . https://doi.org/ 10.1016/j.jtte.2022.05.001 . Open DOISearch in Google Scholar

Meng W, Khayat K. Effect of hybrid fibers on fresh, mechanical properties, and autogenous shrinkage of cost effective UHPC. J Mater Civ Eng. 2018; 30. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002212. Meng W Khayat K . Effect of hybrid fibers on fresh, mechanical properties, and autogenous shrinkage of cost effective UHPC . J Mater Civ Eng . 2018 ; 30 . https://doi.org/ 10.1061/(ASCE)MT.1943-5533.0002212 . Open DOISearch in Google Scholar

Xu L, Lu Q, Chi Y, Yang Y, Yu M, Y. Yan Y. Axial compressive performance of UHPC filled steel tube stub columns containing steel-polypropylene hybrid fiber. Constr Build Mater. 2019; 204:754–767. https://doi.org/10.1016/j.conbuildmat.2019.01.202. Xu L Lu Q Chi Y Yang Y Yu M Y. Yan Y . Axial compressive performance of UHPC filled steel tube stub columns containing steel-polypropylene hybrid fiber . Constr Build Mater . 2019 ; 204 : 754 767 . https://doi.org/ 10.1016/j.conbuildmat.2019.01.202 . Open DOISearch in Google Scholar

Su Y, Li J, Wu C, Wu P, Li Z.-X. Effects of steel fibres on dynamic strength of UHPC. Constr Build Mater. 2016; 114:708–718. https://doi.org/10.1016/j.conbuildmat.2016.04.007. Su Y Li J Wu C Wu P Li Z.-X. Effects of steel fibres on dynamic strength of UHPC . Constr Build Mater . 2016 ; 114 : 708 718 . https://doi.org/ 10.1016/j.conbuildmat.2016.04.007 . Open DOISearch in Google Scholar

Zeng X, Deng K, Liang H, Xu R, Zhao C, Cui B. Uniaxial behavior and constitutive model of reinforcement confined coarse aggregate UHPC. Eng Struct. 2020; 207:110261. https://doi.org/10.1016/j.engstruct.2020.110261. Zeng X Deng K Liang H Xu R Zhao C Cui B . Uniaxial behavior and constitutive model of reinforcement confined coarse aggregate UHPC . Eng Struct . 2020 ; 207 : 110261 . https://doi.org/ 10.1016/j.engstruct.2020.110261 . Open DOISearch in Google Scholar

Zhang Y, Li X, Zhu Y, Shao X. Experimental study on flexural behavior of damaged reinforced concrete (RC) beam strengthened by toughness-improved ultra-high performance concrete (UHPC) layer. Compos Part B Eng. 2020; 186:107834. https://doi.org/10.1016/j.compositesb.2020.107834. Zhang Y Li X Zhu Y Shao X . Experimental study on flexural behavior of damaged reinforced concrete (RC) beam strengthened by toughness-improved ultra-high performance concrete (UHPC) layer . Compos Part B Eng . 2020 ; 186 : 107834 . https://doi.org/ 10.1016/j.compositesb.2020.107834 . Open DOISearch in Google Scholar

Ghafari E, Costa H, Júlio E. RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers. Constr Build Mater. 2014; 66:375-383. https://doi.org/10.1016/j.conbuildmat.2014.05.064. Ghafari E Costa H Júlio E. RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers . Constr Build Mater . 2014 ; 66 : 375 - 383 . https://doi.org/ 10.1016/j.conbuildmat.2014.05.064 . Open DOISearch in Google Scholar

Thomas RJ, Sorensen AD. Review of strain rate effects for UHPC in tension. Constr Build Mater. 2017; 153:846-856. https://doi.org/10.1016/j.conbuildmat.2017.07.168. Thomas RJ Sorensen AD . Review of strain rate effects for UHPC in tension . Constr Build Mater . 2017 ; 153 : 846 - 856 . https://doi.org/ 10.1016/j.conbuildmat.2017.07.168 . Open DOISearch in Google Scholar

Ozawa M, Subedi Parajuli S, Uchida Y, Zhou B. Preventive effects of polypropylene and jute fibers on spalling of UHPC at high temperatures in combination with waste porous ceramic fine aggregate as an internal curing material. Constr Build Mater. 2019; 206:219-225. https://doi.org/10.1016/j.conbuildmat.2019.02.056. Ozawa M Subedi Parajuli S Uchida Y Zhou B . Preventive effects of polypropylene and jute fibers on spalling of UHPC at high temperatures in combination with waste porous ceramic fine aggregate as an internal curing material . Constr Build Mater . 2019 ; 206 : 219 - 225 . https://doi.org/ 10.1016/j.conbuildmat.2019.02.056 . Open DOISearch in Google Scholar

Yu R, Spiesz P, Brouwers HJH. Effect of nano-silica on the hydration and microstructure development of ultra-high performance concrete (UHPC) with a low binder amount. Constr Build Mater. 2014; 65:140-150. https://doi.org/10.1016/j.conbuildmat. 2014.04.063. Yu R Spiesz P Brouwers HJH . Effect of nano-silica on the hydration and microstructure development of ultra-high performance concrete (UHPC) with a low binder amount . Constr Build Mater . 2014 ; 65 : 140 - 150 . https://doi.org/ 10.1016/j.conbuildmat.2014.04.063 . Open DOISearch in Google Scholar

Qian D, Yu R, Shui Z, Sun Y, Jiang C, Zhou F, Ding M, Tong X, He Y. A novel development of green ultra-high performance concrete (UHPC) based on appropriate application of recycled cementitious material. J Clean Prod. 2020; 261:121231. https://doi.org/10.1016/J.JCLEPRO.2020.121231. Qian D Yu R Shui Z Sun Y Jiang C Zhou F Ding M Tong X He Y . A novel development of green ultra-high performance concrete (UHPC) based on appropriate application of recycled cementitious material . J Clean Prod . 2020 ; 261 : 121231 . https://doi.org/ 10.1016/J.JCLEPRO.2020.121231 . Open DOISearch in Google Scholar

Kheir J, Klausen A, Hammer TA, De Meyst L, Hilloulin B, Van Tittelboom K, Loukili A, De Belie N. Early age autogenous shrinkage cracking risk of an ultra-high performance concrete (UHPC) wall: modelling and experimental results. Eng Fract Mech. 2021; 257:108024. https://doi.org/10.1016/j.engfracmech.2021.108024. Kheir J Klausen A Hammer TA De Meyst L Hilloulin B Van Tittelboom K Loukili A De Belie N . Early age autogenous shrinkage cracking risk of an ultra-high performance concrete (UHPC) wall: modelling and experimental results . Eng Fract Mech . 2021 ; 257 : 108024 . https://doi.org/ 10.1016/j.engfracmech.2021.108024 . Open DOISearch in Google Scholar

Li S, Tang L, Shi W, Zhong C. Experimental investigation on hydroabrasive erosion of steel fiber UHPC and rubber UHPC. Adv Mater Sci Eng. 2020; 2020:5920824. https://doi.org/10.1155/2020/5920824. Li S Tang L Shi W Zhong C . Experimental investigation on hydroabrasive erosion of steel fiber UHPC and rubber UHPC . Adv Mater Sci Eng . 2020 ; 2020 : 5920824 . https://doi.org/ 10.1155/2020/5920824 . Open DOISearch in Google Scholar

Jia L, Fang Z, Huang Z, Pilakoutas K, Wang Q, Tan X. Flexural behavior of UHPC beams prestressed with external CFRP tendons. Appl Sci. 2021; 11:9189. https://doi.org/10.3390/app11199189. Jia L Fang Z Huang Z Pilakoutas K Wang Q Tan X . Flexural behavior of UHPC beams prestressed with external CFRP tendons . Appl Sci . 2021 ; 11 : 9189 . https://doi.org/ 10.3390/app11199189 . Open DOISearch in Google Scholar

Kalifa P, Chéné G, Gallé C. High-temperature behaviour of HPC with polypropylene fibres—from spalling to microstructure. Cem Concr Res. 2001; 31:1487-1499. https://doi.org/10.1016/S0008-8846(01)00596-8. Kalifa P Chéné G Gallé C. High-temperature behaviour of HPC with polypropylene fibres—from spalling to microstructure . Cem Concr Res . 2001 ; 31 : 1487 - 1499 . https://doi.org/ 10.1016/S0008-8846(01)00596-8 . Open DOISearch in Google Scholar

Noumowé A, Carré H, Daoud A, Toutanji H. High-strength self-compacting concrete exposed to fire test. J Mater Civ Eng. 2006; 18:754-758. https://doi.org/10.1061/(asce)0899-1561(2006)18:6(754). Noumowé A Carré H Daoud A Toutanji H . High-strength self-compacting concrete exposed to fire test . J Mater Civ Eng . 2006 ; 18 : 754 - 758 . https://doi.org/ 10.1061/(asce)0899-1561(2006)18:6(754) . Open DOISearch in Google Scholar

PhanL.Spalling and mechanical properties of high strength concrete at high temperature. Proc Concr under Sev Cond Fr. 2007; 1595-1608. http://fire.nist.gov/bfrlpubs/build07/art019.html (accessed December 26, 2021). Phan L. Spalling and mechanical properties of high strength concrete at high temperature . Proc Concr under Sev Cond Fr . 2007 ; 1595 - 1608 . http://fire.nist.gov/bfrlpubs/build07/art019.html ( accessed December 26, 2021 ). Search in Google Scholar

Chan SYN, X. Luo X, Sun W. Efect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete. Constr Build Mater. 2000; 14:261-266. https://doi.org/10.1016/S0950-0618(00)00031-3. Chan SYN X. Luo X Sun W . Efect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete . Constr Build Mater . 2000 ; 14 : 261 - 266 . https://doi.org/ 10.1016/S0950-0618(00)00031-3 . Open DOISearch in Google Scholar

Aslani F, Bastami M Constitutive relationships for normal-and high-strength concrete at elevated temperatures. ACI Mater J. 2011; 108:355-364. https://doi.org/10.14359/51683106. Aslani F Bastami M Constitutive relationships for normal-and high-strength concrete at elevated temperatures . ACI Mater J . 2011 ; 108 : 355 - 364 . https://doi.org/ 10.14359/51683106 . Open DOISearch in Google Scholar

Lau A, Anson M. Effect of high temperatures on high performance steel fibre reinforced concrete. Cem Concr Res. 2006; 36:1698-1707. https://doi.org/10.1016/j.cemconres.2006.03.024. Lau A Anson M . Effect of high temperatures on high performance steel fibre reinforced concrete . Cem Concr Res . 2006 ; 36 : 1698 - 1707 . https://doi.org/ 10.1016/j.cemconres.2006.03.024 . Open DOISearch in Google Scholar

Varona FB, Baeza FJ, Bru D, Ivorra S. Influence of high temperature on the mechanical properties of hybrid fibre reinforced normal and high strength concrete, Constr Build Mater. 2018; 159:73-82. https://doi.org/10.1016/J.CONBUILDMAT.2017.10.129. Varona FB Baeza FJ Bru D Ivorra S . Influence of high temperature on the mechanical properties of hybrid fibre reinforced normal and high strength concrete , Constr Build Mater . 2018 ; 159 : 73 - 82 . https://doi.org/ 10.1016/J.CONBUILDMAT.2017.10.129 . Open DOISearch in Google Scholar

Mindess S, Young JF, Darwin DC. 2nd ed.; Upper Saddle River, NJ: Prentice-Hall; 2003. Mindess S Young JF Darwin DC . 2nd ed .; Upper Saddle River, NJ : Prentice-Hall ; 2003 . Search in Google Scholar

Liu CT, Huang JS. Fire performance of highly flowable reactive powder concrete. Constr Build Mater. 23 (2009) 2072-2079. https://doi.org/10.1016/ j.conbuildmat.2008.08.022. Liu CT Huang JS . Fire performance of highly flowable reactive powder concrete . Constr Build Mater . 23 ( 2009 ) 2072 - 2079 . https://doi.org/ 10.1016/j.conbuildmat.2008.08.022 . Open DOISearch in Google Scholar

Bazant ZP, Thonguthai W. Pore pressure and drying of concrete at high temperature. ASCE J Eng Mech Div. 1978; 104:1059-1079. https://doi.org/10.1061/jmcea3.0002404. Bazant ZP Thonguthai W . Pore pressure and drying of concrete at high temperature . ASCE J Eng Mech Div . 1978 ; 104 : 1059 - 1079 . https://doi.org/ 10.1061/jmcea3.0002404 . Open DOISearch in Google Scholar

Zohrevand P, Mirmiran P Behavior of ultrahigh-performance concrete confined by fiber-reinforced polymers. J Mater Civ Eng. 2011; 23:1727-1734. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000324. Zohrevand P Mirmiran P Behavior of ultrahigh-performance concrete confined by fiber-reinforced polymers . J Mater Civ Eng . 2011 ; 23 : 1727 - 1734 . https://doi.org/ 10.1061/(ASCE)MT.1943-5533.0000324 . Open DOISearch in Google Scholar

Mróz K, Hager I. Evaluation of nature and intensity of fire concrete spalling by frequency analysis of sound records. Cem Concr. Res. 2021; 148:106539. https://doi.org/10.1016/J.CEMCONRES.2021.106539. Mróz K Hager I . Evaluation of nature and intensity of fire concrete spalling by frequency analysis of sound records . Cem Concr. Res . 2021 ; 148 : 106539 . https://doi.org/ 10.1016/J.CEMCONRES.2021.106539 . Open DOISearch in Google Scholar

Abadel A, Elsanadedy H, Almusallam T, Alaskar A, Abbas H, Al-Salloum Y. Residual compressive strength of plain and fiber reinforced concrete after exposure to different heating and cooling regimes. 2021; 26:6746-6765.https://doi.org/10.1080/19648189.2021.1960898. Abadel A Elsanadedy H Almusallam T Alaskar A Abbas H Al-Salloum Y . Residual compressive strength of plain and fiber reinforced concrete after exposure to different heating and cooling regimes . 2021 ; 26 : 6746 - 6765 .https://doi.org/ 10.1080/19648189.2021.1960898 . Open DOISearch in Google Scholar

Zhang D, Tan KH. Effect of various polymer fibers on spalling mitigation of ultra-high performance concrete at high temperature. Cem Concr Compos. 2020; 114: 103815. https://doi.org/10.1016/j.cemconcomp.2020.103815. Zhang D Tan KH . Effect of various polymer fibers on spalling mitigation of ultra-high performance concrete at high temperature . Cem Concr Compos . 2020 ; 114 : 103815 . https://doi.org/ 10.1016/j.cemconcomp.2020.103815 . Open DOISearch in Google Scholar

Travis QB, Mobasher B. Correlation of elastic modulus and permeability in concrete subjected to elevated temperatures. J Mater Civ Eng. 2010; 22:735-740. https://doi.org/10.1061/(asce)mt.1943-5533.0000074. Travis QB Mobasher B . Correlation of elastic modulus and permeability in concrete subjected to elevated temperatures . J Mater Civ Eng . 2010 ; 22 : 735 - 740 . https://doi.org/ 10.1061/(asce)mt.1943-5533.0000074 . Open DOISearch in Google Scholar

Gallé C, Sercombe J. Permeability and pore structure evolution of silico-calcareous and hematite high-strength concretes submitted to high temperatures. Mater Struct Constr. 2001; 34:619-628. https://doi.org/10.1617/13695. Gallé C Sercombe J . Permeability and pore structure evolution of silico-calcareous and hematite high-strength concretes submitted to high temperatures . Mater Struct Constr . 2001 ; 34 : 619 - 628 . https://doi.org/ 10.1617/13695 . Open DOISearch in Google Scholar

Wille K, Naaman AE, Parra-Montesinos GJ. Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): a simpler way. ACI Mater J. 2011; 108:46–54. https://doi.org/10.14359/51664215. Wille K Naaman AE Parra-Montesinos GJ . Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): a simpler way . ACI Mater J . 2011 ; 108 : 46 54 . https://doi.org/ 10.14359/51664215 . Open DOISearch in Google Scholar

Richard P, Cheyrezy M. Composition of reactive powder concretes. Cem Concr Res. 1995; 25:1501–1511. https://doi.org/10.1016/0008-8846(95)00144-2. Richard P Cheyrezy M . Composition of reactive powder concretes . Cem Concr Res . 1995 ; 25 : 1501 1511 . https://doi.org/ 10.1016/0008-8846(95)00144-2 . Open DOISearch in Google Scholar

Klingsch EW, Frangi A, Fontana M. High- and ultrahigh-performance concrete: a systematic experimental analysis on spalling. Am Concr Institute, ACI Spec. Publ. 2011; 279:269–318. Klingsch EW Frangi A Fontana M . High- and ultrahigh-performance concrete: a systematic experimental analysis on spalling . Am Concr Institute, ACI Spec. Publ . 2011 ; 279 : 269 318 . Search in Google Scholar

Diederichs U, Mertzsch O. Behaviour of ultra high strength concrete at high temperatures. In: Kassel, Ed. Second International Symposium on Ultra High Performance Concrete. 2008, pp. 347–354. Diederichs U Mertzsch O . Behaviour of ultra high strength concrete at high temperatures . In: Kassel , Ed. Second International Symposium on Ultra High Performance Concrete . 2008 , pp. 347 354 . Search in Google Scholar

Peng GF, Kang YR, Huang YZ, Liu XP, Chen Q. Experimental research on fire resistance of reactive powder concrete. Adv Mater Sci Eng. 2012. https://doi.org/10.1155/2012/860303. Peng GF Kang YR Huang YZ Liu XP Chen Q . Experimental research on fire resistance of reactive powder concrete . Adv Mater Sci Eng . 2012 . https://doi.org/ 10.1155/2012/860303 . Open DOISearch in Google Scholar

Varona FB, Baeza FJ, Bru D, Ivorra S. Influence of high temperature on the mechanical properties of hybrid fibre reinforced normal and high strength concrete, Constr Build Mater. 2018; 159:73–82. https://doi.org/10.1016/j.conbuildmat.2017.10.129. Varona FB Baeza FJ Bru D Ivorra S . Influence of high temperature on the mechanical properties of hybrid fibre reinforced normal and high strength concrete , Constr Build Mater . 2018 ; 159 : 73 82 . https://doi.org/ 10.1016/j.conbuildmat.2017.10.129 . Open DOISearch in Google Scholar

Bangi MR, Horiguchi T. Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures. Cem Concr Res. 2012; 42:459–466. https://doi.org/10.1016/J.CEMCONRES.2011.11.014. Bangi MR Horiguchi T . Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures . Cem Concr Res . 2012 ; 42 : 459 466 . https://doi.org/ 10.1016/J.CEMCONRES.2011.11.014 . Open DOISearch in Google Scholar

Novák J, Kohoutková A. Fire response of hybrid fiber reinforced concrete to high temperature. Procedia Eng. 2017; 172:784–790. https://doi.org/10.1016/J.PR0ENG.2017.02.123. Novák J Kohoutková A. Fire response of hybrid fiber reinforced concrete to high temperature . Procedia Eng . 2017 ; 172 : 784 790 . https://doi.org/ 10.1016/J.PR0ENG.2017.02.123 . Open DOISearch in Google Scholar

Heinz D, Ludwig H-M. Heat treatment and the risk of DEF delayed ettringite formation in UHPC. In: International Symposium on Ultra High Performance Concrete in Kassel, Germany. 2004; pp. 717–730. Heinz D Ludwig H-M . Heat treatment and the risk of DEF delayed ettringite formation in UHPC . In: International Symposium on Ultra High Performance Concrete in Kassel, Germany . 2004 ; pp. 717 730 . Search in Google Scholar

Chen HJ, Yu YL, Tang CW. Mechanical properties of ultra-high performance concrete before and after exposure to high temperatures. Materials (Basel). 2020; 13:770. https://doi.org/10.3390/mal3030770. Chen HJ Yu YL Tang CW . Mechanical properties of ultra-high performance concrete before and after exposure to high temperatures . Materials (Basel) . 2020 ; 13 : 770 . https://doi.org/ 10.3390/mal3030770 . Open DOISearch in Google Scholar

Tayeh B, Hadzima-nyarko M, Youssef M, Riad R, Defalla R, Hafez A. Behavior of ultra-high-performance concrete with hybrid synthetic fiber waste exposed to elevated temperatures. 2023; 13:129. Tayeh B Hadzima-nyarko M Youssef M Riad R Defalla R Hafez A . Behavior of ultra-high-performance concrete with hybrid synthetic fiber waste exposed to elevated temperatures . 2023 ; 13 : 129 . Search in Google Scholar

ISO, Elements of building construction - Part 1: General requirements. International Organization for Standardization, Geneva, Switzerland. 1999. ISO , Elements of building construction - Part 1: General requirements . International Organization for Standardization , Geneva, Switzerland . 1999 . Search in Google Scholar

ASTM international, standard test method for slump of hydraulic-cement concrete. ASTM C143-10a. 2010; 13:1–4. ASTM international, standard test method for slump of hydraulic-cement concrete . ASTM C143-10a. 2010 ; 13 : 1 4 . Search in Google Scholar

ASTM C138/C138M-17a, No title standard test method for density (unit weight), yield, and air content (gravimetric) of concrete. ASTM Int. 2017. https://doi.org/10.1520/C0138_C0138M-17A. ASTM C138/C138M-17a , No title standard test method for density (unit weight), yield, and air content (gravimetric) of concrete . ASTM Int . 2017 . https://doi.org/ 10.1520/C0138_C0138M-17A . Open DOISearch in Google Scholar

ASTM-C39, standard test method for compressive strength of cylindrical concrete. Annu B ASTM Stand. 2021; 10:1520. https://doi.org/D.O.I:10.1520/C0039_C0039M-10. ASTM-C39, standard test method for compressive strength of cylindrical concrete . Annu B ASTM Stand . 2021 ; 10 : 1520 . https://doi.org/D.O.I: 10.1520/C0039_C0039M-10 . Open DOISearch in Google Scholar

ASTM C469-02, standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression. ASTM Stand. B. 2002; 04:1–5. http://portales.puj.edu.co/wjfajardo/mecanicadesolidos/laboratorios/astm/C469.pdf. ASTM C469-02, standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression . ASTM Stand. B . 2002 ; 04 : 1 5 . http://portales.puj.edu.co/wjfajardo/mecanicadesolidos/laboratorios/astm/C469.pdf. Search in Google Scholar

ASTM C496-96, standard test method for splitting tensile strength of cylindrical concrete specimens. Man Hydrocarb Anal 6th Ed. 2008; i:545-545–3. ASTM C496-96, standard test method for splitting tensile strength of cylindrical concrete specimens . Man Hydrocarb Anal 6th Ed . 2008 ; i:545-545–3. Search in Google Scholar

A. C78/C78M-16, standard test method for flexural strength of concrete (using simple beam with third-point loading). ASTM Int. 2016. https://doi.org/10.1520/C0078_C0078M-16. A. C78/C78M-16, standard test method for flexural strength of concrete (using simple beam with third-point loading) . ASTM Int . 2016 . https://doi.org/ 10.1520/C0078_C0078M-16 . Open DOISearch in Google Scholar

Bisby LA, Chen JF, Li SQ, Stratford TJ, Cueva, Crossling K. Strengthening fire-damaged concrete by confinement with fibre-reinforced polymer wraps. Eng Struct. 2011; 33:3381–3391. https://doi.org/10.1016/J.ENGSTRUCT.2011.07.002. Bisby LA Chen JF Li SQ Stratford TJ Cueva Crossling K . Strengthening fire-damaged concrete by confinement with fibre-reinforced polymer wraps . Eng Struct . 2011 ; 33 : 3381 3391 . https://doi.org/ 10.1016/J.ENGSTRUCT.2011.07.002 . Open DOISearch in Google Scholar

Abadel AA, Alharbi YR. Confinement effectiveness of CFRP strengthened ultra-high performance concrete cylinders exposed to elevated temperatures. Mater Sci. 2021; 39:478–490. https://doi.org/10.2478/MSP-2021-0040. Abadel AA Alharbi YR . Confinement effectiveness of CFRP strengthened ultra-high performance concrete cylinders exposed to elevated temperatures . Mater Sci . 2021 ; 39 : 478 490 . https://doi.org/ 10.2478/MSP-2021-0040 . Open DOISearch in Google Scholar

Ju Y, Wang L, Liu H, Tian K. An experimental investigation of the thermal spalling of polypropylene-fibered reactive powder concrete exposed to elevated temperatures. Sci Bull. 2015; 60:2022–2040. https://doi.org/10.1007/S11434-015-0939-0. Ju Y Wang L Liu H Tian K . An experimental investigation of the thermal spalling of polypropylene-fibered reactive powder concrete exposed to elevated temperatures . Sci Bull . 2015 ; 60 : 2022 2040 . https://doi.org/ 10.1007/S11434-015-0939-0 . Open DOISearch in Google Scholar

Novák J, Kohoutková A. Fibre reinforced concrete exposed to elevated temperature. IOP Conference Series Materials Science and Engineering. 2017; 246:012045. https://doi.org/10.1088/1757-899X/246/1/012045. Novák J Kohoutková A . Fibre reinforced concrete exposed to elevated temperature . IOP Conference Series Materials Science and Engineering . 2017 ; 246 : 012045 . https://doi.org/ 10.1088/1757-899X/246/1/012045 . Open DOISearch in Google Scholar

Bangi MR, Horiguchi T. Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures. Cem Concr Res. 2012; 42:459–466. https://doi.org/10.1016/j.cemconres.2011.11.014. Bangi MR Horiguchi T . Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures . Cem Concr Res . 2012 ; 42 : 459 466 . https://doi.org/ 10.1016/j.cemconres.2011.11.014 . Open DOISearch in Google Scholar

Hager I, Zdeb T, Krzemié K. The impact of the amount of polypropylene fibres on spalling behaviour and residual mechanical properties of reactive powder concretes. MATEC Web Conference. 2013; 6:2003. https://doi.org/10.1051/matecconf/20130602003. Hager I Zdeb T Krzemié K. The impact of the amount of polypropylene fibres on spalling behaviour and residual mechanical properties of reactive powder concretes . MATEC Web Conference . 2013 ; 6 : 2003 . https://doi.org/ 10.1051/matecconf/20130602003 . Open DOISearch in Google Scholar

Peng GF, Chan SYN, Anson M. Chemical kinetics of C-S-H decomposition in hardened cement paste subjected to elevated temperatures up to 800°C. 2015; 13:47–52. https://doi.org/10.1680/ADCR.2001.13.2.47. Peng GF Chan SYN Anson M . Chemical kinetics of C-S-H decomposition in hardened cement paste subjected to elevated temperatures up to 800°C . 2015 ; 13 : 47 52 . https://doi.org/ 10.1680/ADCR.2001.13.2.47 . Open DOISearch in Google Scholar

Scheinherrová L, Vejmelková E, Keppert M, Bezdička P Doleželová M, Krejsová J, Grzeszczyk S, Matuszek-Chmurowska A, Černý R. Effect of Cu-Zn coated steel fibers on high temperature resistance of reactive powder concrete. Cem Concr Res. 2019; 117:45–57. https://doi.org/10.1016/J.CEMCONRES.2018.12.008. Scheinherrová L Vejmelková E Keppert M Bezdička P Doleželová M Krejsová J Grzeszczyk S Matuszek-Chmurowska A Černý R. Effect of Cu-Zn coated steel fibers on high temperature resistance of reactive powder concrete . Cem Concr Res . 2019 ; 117 : 45 57 . https://doi.org/ 10.1016/J.CEMCONRES.2018.12.008 . Open DOISearch in Google Scholar

Ramezani M, Dehghani A, Sherif MM. Carbon nanotube reinforced cementitious composites: a comprehensive review. Constr Build Mater. 2022; 315:125100. https://doi.org/10.1016/J.CONBUILDMAT.2021.125100. Ramezani M Dehghani A Sherif MM . Carbon nanotube reinforced cementitious composites: a comprehensive review . Constr Build Mater . 2022 ; 315 : 125100 . https://doi.org/ 10.1016/J.CONBUILDMAT.2021.125100 . Open DOISearch in Google Scholar

Abadel AA, Abbas H., Alshaikh IMH, Sennah K, Tuladhar R, Altheeb A, Alamri M. Experimental study on the effects of external strengthening and elevated temperature on the shear behavior of ultra-high-performance fiber-reinforced concrete deep beams. Structures. 2023; 49:943–957. https://doi.org/10.1016/j.istruc.2023.02.004. Abadel AA Abbas H. Alshaikh IMH Sennah K Tuladhar R Altheeb A Alamri M . Experimental study on the effects of external strengthening and elevated temperature on the shear behavior of ultra-high-performance fiber-reinforced concrete deep beams . Structures . 2023 ; 49 : 943 957 . https://doi.org/ 10.1016/j.istruc.2023.02.004 . Open DOISearch in Google Scholar

Ambily PS, Ravisankar K, Umarani C, Dattatreya JK. Iyer NR. Development of ultra-high-performance geopolymer concrete. Concr Res. 2014; 66:82–89. https://doi.org/10.1680/macr.13.00057. Ambily PS Ravisankar K Umarani C Dattatreya JK Iyer NR . Development of ultra-high-performance geopolymer concrete . Concr Res . 2014 ; 66 : 82 89 . https://doi.org/ 10.1680/macr.13.00057 . Open DOISearch in Google Scholar

Peng NR, Bian SH, Guo ZQ, Zhao J, Peng XL, Jiang YC. Effect of thermal shock due to rapid cooling on residual mechanical properties of fiber concrete exposed to high temperatures. Constr Build Mater. 2008; 22:948–955. https://doi.org/10.1016/j.conbuildmat.2006.12.002. Peng NR Bian SH Guo ZQ Zhao J Peng XL Jiang YC . Effect of thermal shock due to rapid cooling on residual mechanical properties of fiber concrete exposed to high temperatures . Constr Build Mater . 2008 ; 22 : 948 955 . https://doi.org/ 10.1016/j.conbuildmat.2006.12.002 . Open DOISearch in Google Scholar

Zhang P, Zhang P, Wu J, Zhang Y, Guo J. Mechanical properties of polyvinyl alcohol fiber-reinforced cementitious composites after high-temperature exposure. Gels. 2022; 8:662. https://doi.org/10.3390/ GELS8100662. Zhang P Zhang P Wu J Zhang Y Guo J . Mechanical properties of polyvinyl alcohol fiber-reinforced cementitious composites after high-temperature exposure . Gels . 2022 ; 8 : 662 . https://doi.org/ 10.3390/ GELS8100662 . Open DOISearch in Google Scholar

Wu Z, Shi C, He W, Wu L. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Constr Build Mater. 2016; 103:8–14. https://doi.org/10.1016/ J.CONBUILDMAT.2015.11.028. Wu Z Shi C He W Wu L . Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete . Constr Build Mater . 2016 ; 103 : 8 14 . https://doi.org/ 10.1016/J.CONBUILDMAT.2015.11.028 . Open DOISearch in Google Scholar

Tahwia AM, Elgendy GM, Amin M. Durability and microstructure of eco-efficient ultra-high-performance concrete. Constr Build Mater. 2021; 303:124491. https://doi.org/10.1016/j.conbuildmat.2021.124491. Tahwia AM Elgendy GM Amin M . Durability and microstructure of eco-efficient ultra-high-performance concrete . Constr Build Mater . 2021 ; 303 : 124491 . https://doi.org/ 10.1016/j.conbuildmat.2021.124491 . Open DOISearch in Google Scholar

Gong J, Ma Y, Fu J, Hu J, Ouyang X, Zhang Z, Wang H. Utilization of fibers in ultra-high performance concrete: a review. Compos Part B Eng. 2022; 241:109995. https://doi.org/10.1016/j.compositesb.2022.109995. Gong J Ma Y Fu J Hu J Ouyang X Zhang Z Wang H . Utilization of fibers in ultra-high performance concrete: a review . Compos Part B Eng . 2022 ; 241 : 109995 . https://doi.org/ 10.1016/j.compositesb.2022.109995 . Open DOISearch in Google Scholar

Jiao C, Ta J, Niu Y, Meng S, Chen XF, He S, Ma R. Analysis of the flexural properties of ultra-high-performance concrete consisting of hybrid straight steel fibers. Case Stud Constr Mater. 2022; 17:e01153. https://doi.org/10.1016/J.CSCM.2022.E01153. Jiao C Ta J Niu Y Meng S Chen XF He S Ma R . Analysis of the flexural properties of ultra-high-performance concrete consisting of hybrid straight steel fibers . Case Stud Constr Mater . 2022 ; 17 : e01153 . https://doi.org/ 10.1016/J.CSCM.2022.E01153 . Open DOISearch in Google Scholar

Abid M, Hou X, Zheng W, Hussain RR. High temperature and residual properties of reactive powder concrete – a review. Constr Build Mater. 2017; 147:339–351. https://doi.org/10.1016/J.CONBUILDMAT.2017.04.083. Abid M Hou X Zheng W Hussain RR . High temperature and residual properties of reactive powder concrete – a review . Constr Build Mater . 2017 ; 147 : 339 351 . https://doi.org/ 10.1016/J.CONBUILDMAT.2017.04.083 . Open DOISearch in Google Scholar

Yoo D-Y, Banthia N, Lee J-Y, Yoon Y-S. Effect of fiber geometric property on rate dependent flexural behavior of ultra-high-performance cementitious composite. Cem Concr Compos. 2018; 86:57–71. https://doi.org/10.1016/j.cemconcomp.2017.11.002. Yoo D-Y Banthia N Lee J-Y Yoon Y-S . Effect of fiber geometric property on rate dependent flexural behavior of ultra-high-performance cementitious composite . Cem Concr Compos . 2018 ; 86 : 57 71 . https://doi.org/ 10.1016/j.cemconcomp.2017.11.002 . Open DOISearch in Google Scholar

Yoo DY, Shin W. Improvement of fiber corrosion resistance of ultra-high-performance concrete by means of crack width control and repair. Cem Concr Compos. 2021; 121:104073. https://doi.org/10.1016/J.CEMCONCOMP.2021.104073. Yoo DY Shin W . Improvement of fiber corrosion resistance of ultra-high-performance concrete by means of crack width control and repair . Cem Concr Compos . 2021 ; 121 : 104073 . https://doi.org/ 10.1016/J.CEMCONCOMP.2021.104073 . Open DOISearch in Google Scholar

Li Y, Tan KH, Yang EH. Synergistic effects of hybrid polypropylene and steel fibers on explosive spalling prevention of ultra-high performance concrete at elevated temperature. Cem Concr Compos. 2019; 96:174–181. https://doi.org/10.1016/J. CEMCONCOMP.2018.11.009. Li Y Tan KH Yang EH . Synergistic effects of hybrid polypropylene and steel fibers on explosive spalling prevention of ultra-high performance concrete at elevated temperature . Cem Concr Compos . 2019 ; 96 : 174 181 . https://doi.org/ 10.1016/J.CEMCONCOMP.2018.11.009 . Open DOISearch in Google Scholar

Ozawa M, Morimoto H. Effects of various fibres on high-temperature spalling in high-performance concrete. Constr Build Mater. 2014; 71:83–92. https://doi.org/10.1016/j.conbuildmat.2014.07.068. Ozawa M Morimoto H . Effects of various fibres on high-temperature spalling in high-performance concrete . Constr Build Mater . 2014 ; 71 : 83 92 . https://doi.org/ 10.1016/j.conbuildmat.2014.07.068 . Open DOISearch in Google Scholar

Xiao L, Chen P, Huang J, Peng S, Yang Z. Compressive behavior of reinforced steel-PVA hybrid fiber concrete short columns after high temperature exposure. Constr Build Mater. 2022; 342:127935. https://doi.org/10.1016/J.CONBUILDMAT.2022.127935. Xiao L Chen P Huang J Peng S Yang Z . Compressive behavior of reinforced steel-PVA hybrid fiber concrete short columns after high temperature exposure . Constr Build Mater . 2022 ; 342 : 127935 . https://doi.org/ 10.1016/J.CONBUILDMAT.2022.127935 . Open DOISearch in Google Scholar

Xiao J, Falkner H. On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures. Fire Saf J. 2006; 41:115–121. https://doi.org/10.1016/J.FIRESAF.2005.11.004. Xiao J Falkner H . On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures . Fire Saf J . 2006 ; 41 : 115 121 . https://doi.org/ 10.1016/J.FIRESAF.2005.11.004 . Open DOISearch in Google Scholar

Zhang D, Tan KH, Dasari A, Weng Y. Effect of natural fibers on thermal spalling resistance of ultra-high performance concrete. Cem Concr Compos. 2020; 109:103512. https://doi.org/10.1016/j.cemconcomp.2020.103512. Zhang D Tan KH Dasari A Weng Y . Effect of natural fibers on thermal spalling resistance of ultra-high performance concrete . Cem Concr Compos . 2020 ; 109 : 103512 . https://doi.org/ 10.1016/j.cemconcomp.2020.103512 . Open DOISearch in Google Scholar

eISSN:
2083-134X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties