Centre for Advanced Manufacturing Technologies – Fraunhofer Project Center, Department of Laser Technologies, Automation and Production Management, Faculty of Mechanical Engineering, Wroclaw University of Science and TechnologyWroclaw, Poland
Centre for Advanced Manufacturing Technologies – Fraunhofer Project Center, Department of Laser Technologies, Automation and Production Management, Faculty of Mechanical Engineering, Wroclaw University of Science and TechnologyWroclaw, Poland
Centre for Advanced Manufacturing Technologies – Fraunhofer Project Center, Department of Laser Technologies, Automation and Production Management, Faculty of Mechanical Engineering, Wroclaw University of Science and TechnologyWroclaw, Poland
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Kavitha K, Vijayan R, Sathishkumar T. Fibre-metal laminates: a review of reinforcement and formability characteristics. Mater Today Proc. 2020;22:601–5.KavithaKVijayanRSathishkumarTFibre-metal laminates: a review of reinforcement and formability characteristicsMater Today Proc202022601510.1016/j.matpr.2019.08.232Search in Google Scholar
Drossel WG, Riemer M, Scholz P, Osiecki T, Kroll L, Frankiewicz M, et al. Forming induced interface structures for manufacturing hybrid metal composites. CIRP Ann. 2020;69(1):253–6.DrosselWGRiemerMScholzPOsieckiTKrollLFrankiewiczMForming induced interface structures for manufacturing hybrid metal compositesCIRP Ann2020691253610.1016/j.cirp.2020.03.010Search in Google Scholar
Osiecki T, Gerstenberger C, Timmel T, Frankiewicz M, Dziedzic R, Scholz P, et al. Inverse hybrid laminate for lightweight applications. Key Eng Mater. 2020;847:40–5.OsieckiTGerstenbergerCTimmelTFrankiewiczMDziedzicRScholzPInverse hybrid laminate for lightweight applicationsKey Eng Mater202084740510.4028/www.scientific.net/KEM.847.40Search in Google Scholar
Ding Z, Wang H, Luo J, Li N. A review on forming technologies of fibre metal laminates. Int J Light Mater Manuf. 2021;4(1):110–26.DingZWangHLuoJLiNA review on forming technologies of fibre metal laminatesInt J Light Mater Manuf2021411102610.1016/j.ijlmm.2020.06.006Search in Google Scholar
Stefaniak D, Prussak R. Chances and challenges in the application of fiber metal laminates. Adv Mater Lett. 2019;10(2):91–7.StefaniakDPrussakRChances and challenges in the application of fiber metal laminatesAdv Mater Lett201910291710.5185/amlett.2019.2155Search in Google Scholar
Zhang X, Chen Y, Hu J. Recent advances in the development of aerospace materials. Prog Aerosp Sci. 2018;97:22–34.ZhangXChenYHuJRecent advances in the development of aerospace materialsProg Aerosp Sci201897223410.1016/j.paerosci.2018.01.001Search in Google Scholar
Botelho EC, Silva RA, Pardini LC, Rezende MC. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Mater Res. 2006;9(3):247–56.BotelhoECSilvaRAPardiniLCRezendeMCA review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structuresMater Res2006932475610.1590/S1516-14392006000300002Search in Google Scholar
Heggemann T, Homberg W. Deep drawing of fiber metal laminates for automotive lightweight structures. Compos Struct. 2019;216(February):53–7.HeggemannTHombergWDeep drawing of fiber metal laminates for automotive lightweight structuresCompos Struct2019216February53710.1016/j.compstruct.2019.02.047Search in Google Scholar
Bambach MRR. Fibre composite strengthening of thin steel passenger vehicle roof structures. Thin-Walled Struct. 2014;74:1–11.BambachMRRFibre composite strengthening of thin steel passenger vehicle roof structuresThin-Walled Struct20147411110.1016/j.tws.2013.09.018Search in Google Scholar
Vermeeren CAJR. An historic overview of the development of fibre metal laminates. Appl Compos Mater. 2003;10(4–5):189–205.VermeerenCAJRAn historic overview of the development of fibre metal laminatesAppl Compos Mater2003104–518920510.1023/A:1025533701806Search in Google Scholar
Zopp C, Dittes A, Nestler D, Scharf I, Kroll L, Lampke T. Quasi-static and fatigue bending behavior of a continuous fiber-reinforced thermoplastic/metal laminate. Compos Part B Eng. 2019;174(June), p.107043.ZoppCDittesANestlerDScharfIKrollLLampkeTQuasi-static and fatigue bending behavior of a continuous fiber-reinforced thermoplastic/metal laminateCompos Part B Eng2019174June10704310.1016/j.compositesb.2019.107043Search in Google Scholar
Nestler D, Trautmann M, Nendel S, Wagner G, Kroll L. Innovative hybride Laminate aus Aluminiumlegierungsfolien und faserverstärkten thermoplastischen Schichten. Materwiss Werksttech. 2016;47(11):1121–31.NestlerDTrautmannMNendelSWagnerGKrollLInnovative hybride Laminate aus Aluminiumlegierungsfolien und faserverstärkten thermoplastischen SchichtenMaterwiss Werksttech2016471111213110.1002/mawe.201600636Search in Google Scholar
Osman E, Rashid MWA, Abd Manaf ME, Moriga T, Kamarudin H. Influence of hygrothermal conditioning on the properties of compressed kenaf fiber/epoxy reinforced aluminium laminates. J Mech Eng Sci. 2020;14(4):7405–15.OsmanERashidMWAAbd ManafMEMorigaTKamarudinHInfluence of hygrothermal conditioning on the properties of compressed kenaf fiber/epoxy reinforced aluminium laminatesJ Mech Eng Sci202014474051510.15282/jmes.14.4.2020.09.0583Search in Google Scholar
Heggemann T, Homberg W, Sapli H. Combined curing and forming of fiber metal laminates. Procedia Manuf. 2020;47(2019):36–42.HeggemannTHombergWSapliHCombined curing and forming of fiber metal laminatesProcedia Manuf2020472019364210.1016/j.promfg.2020.04.118Search in Google Scholar
Liu C, Du D, Li H, Hu Y, Xu Y, Tian J, et al. Interlaminar failure behavior of GLARE laminates under short-beam three-point-bending load. Compos Part B Eng. 2016;97(May):361–7.LiuCDuDLiHHuYXuYTianJInterlaminar failure behavior of GLARE laminates under short-beam three-point-bending loadCompos Part B Eng201697May361710.1016/j.compositesb.2016.05.003Search in Google Scholar
Pahr DH, Rammerstorfer FG, Rosenkranz P, Humer K, Weber HW. A study of short-beam-shear and double-lap-shear specimens of glass fabric/epoxy composites. Compos Part B Eng. 2002;33(2):125–32.PahrDHRammerstorferFGRosenkranzPHumerKWeberHWA study of short-beam-shear and double-lap-shear specimens of glass fabric/epoxy compositesCompos Part B Eng20023321253210.1016/S1359-8368(01)00063-4Search in Google Scholar
Chen Y, Wang Y, Wang H. Research progress on inter-laminar failure behavior of fiber metal laminates. Adv Polym Technol. 2020:1–20.ChenYWangYWangHResearch progress on inter-laminar failure behavior of fiber metal laminatesAdv Polym Technol202012010.1155/2020/3097839Search in Google Scholar
Bieniaś J, Jakubczak P, Droździel M, Surowska B. Interlaminar shear strength and failure analysis of aluminium-carbon laminates with a glass fiber interlayer after moisture absorption. Materials (Basel). 2020;13(13):1–14.BieniaśJJakubczakPDroździelMSurowskaBInterlaminar shear strength and failure analysis of aluminium-carbon laminates with a glass fiber interlayer after moisture absorptionMaterials (Basel)2020131311410.3390/ma13132999737247132640550Search in Google Scholar
Hinz S, Omoori T, Hojo M, Schulte K. Damage characterisation of fibre metal laminates under interlaminar shear load. Compos Part A Appl Sci Manuf. 2009;40(6–7):925–31.HinzSOmooriTHojoMSchulteKDamage characterisation of fibre metal laminates under interlaminar shear loadCompos Part A Appl Sci Manuf2009406–79253110.1016/j.compositesa.2009.04.020Search in Google Scholar
Bellini C, Di Cocco V, Sorrentino L. Interlaminar shear strength study on CFRP/Al hybrid laminates with different properties. Frat ed Integrita Strutt. 2020;14(51):442–8.BelliniCDi CoccoVSorrentinoLInterlaminar shear strength study on CFRP/Al hybrid laminates with different propertiesFrat ed Integrita Strutt20201451442810.3221/IGF-ESIS.51.32Search in Google Scholar
Bahari-Sambran F, Meuchelboeck J, Kazemi-Khasragh E, Eslami-Farsani R, Arbab Chirani S. The effect of surface modified nanoclay on the interfacial and mechanical properties of basalt fiber metal laminates. Thin-Walled Struct. 2019;144:106343.Bahari-SambranFMeuchelboeckJKazemi-KhasraghEEslami-FarsaniRArbab ChiraniSThe effect of surface modified nanoclay on the interfacial and mechanical properties of basalt fiber metal laminatesThin-Walled Struct201914410634310.1016/j.tws.2019.106343Search in Google Scholar
Liu J, Xue W. Unconstrained bending and springback behaviors of aluminum-polymer sandwich sheets. Int J Adv Manuf Technol. 2017;91(5–8):1517–29.LiuJXueWUnconstrained bending and springback behaviors of aluminum-polymer sandwich sheetsInt J Adv Manuf Technol2017915–815172910.1007/s00170-016-9819-2Search in Google Scholar
Tsukada T, Minakuchi S, Takeda N. Identification of process-induced residual stress/strain distribution in thick thermoplastic composites based on in situ strain monitoring using optical fiber sensors. J Compos Mater. 2019;53(24):3445–58.TsukadaTMinakuchiSTakedaNIdentification of process-induced residual stress/strain distribution in thick thermoplastic composites based on in situ strain monitoring using optical fiber sensorsJ Compos Mater2019532434455810.1177/0021998319837199Search in Google Scholar
Yanagimoto J, Ikeuchi K. Sheet forming process of carbon fiber reinforced plastics for lightweight parts. CIRP Ann. 2012;61(1):247–50.YanagimotoJIkeuchiKSheet forming process of carbon fiber reinforced plastics for lightweight partsCIRP Ann20126112475010.1016/j.cirp.2012.03.129Search in Google Scholar
Hu Y, Zhang Y, Fu X, Hao G, Jiang W. Mechanical properties of Ti/CF/PMR polyimide fiber metal laminates with various layup configurations. Compos Struct. 2019;229(June):111408.HuYZhangYFuXHaoGJiangWMechanical properties of Ti/CF/PMR polyimide fiber metal laminates with various layup configurationsCompos Struct2019229June11140810.1016/j.compstruct.2019.111408Search in Google Scholar
Che L, Zhou Z, Fang G, Ma Y, Dong W, Zhang J. Cured shape prediction of fiber metal laminates considering interfacial interaction. Compos Struct. 2018;194(April):564–74.CheLZhouZFangGMaYDongWZhangJCured shape prediction of fiber metal laminates considering interfacial interactionCompos Struct2018194April5647410.1016/j.compstruct.2018.04.042Search in Google Scholar
Li H, Xu Y, Hua X, Liu C, Tao J. Bending failure mechanism and flexural properties of GLARE laminates with different stacking sequences. Compos Struct. 2018;187:354–63.LiHXuYHuaXLiuCTaoJBending failure mechanism and flexural properties of GLARE laminates with different stacking sequencesCompos Struct20181873546310.1016/j.compstruct.2017.12.068Search in Google Scholar
Ma Y, Ueda M, Yokozeki T, Sugahara T, Yang Y, Hamada H. A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites. Compos Struct. 2017;160:89–99.MaYUedaMYokozekiTSugaharaTYangYHamadaHA comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional compositesCompos Struct2017160899910.1016/j.compstruct.2016.10.037Search in Google Scholar
Dhaliwal GS, Newaz GM. Experimental and numerical investigation of flexural behavior of carbon fiber reinforced aluminum laminates. J Reinf Plast Compos. 2016;35(12):945–56.DhaliwalGSNewazGMExperimental and numerical investigation of flexural behavior of carbon fiber reinforced aluminum laminatesJ Reinf Plast Compos201635129455610.1177/0731684416632606Search in Google Scholar