Otwarty dostęp

3D numerical simulation of seismic failure of concrete gravity dams considering base sliding


Zacytuj

[1] Arabshahi, H., Lotfi, V. (2008). Earthquake response of concrete gravity dams including dam–foundation interface nonlinearities. Eng. Struct., 30(11),3065-73. https://doi.org/10.1016/j.engstruct.2008.04.01810.1016/j.engstruct.2008.04.018Search in Google Scholar

[2] Viladkar, M.N., Al-Assady, A.M.S. (2012). Nonlinear analysis of pine flat dam including base sliding and separation. Proceeding of the 15th World Conference on Earthquake Engineering (15 WCEE), Lisbon.Search in Google Scholar

[3] Ouzandja, D., Tiliouine, B. (2015). Effects of Dam-Foundation Contact Conditions on Seismic Performance of Concrete Gravity Dams, Arab. J. Sci. Eng., 40(11), pp. 3047-56. https://doi.org/10.1007/s13369-015-1770-210.1007/s13369-015-1770-2Search in Google Scholar

[4] Ouzandja, D. (2016). Effets des conditions de contact à l’interface barrage-fondation sur la performance sismique des barrages-poids en béton (Doctoral dissertation, Alger, Ecole Nationale Polytechnique).Search in Google Scholar

[5] Gharibdoust, A., Aldemir, A., Binici, B. (2020). Seismic behaviour of roller compacted concrete dams under different base treatments. Struct. Infrastruct. Eng., 16(2), 355-66. https://doi.org/10.1080/15732479.2019.166150010.1080/15732479.2019.1661500Search in Google Scholar

[6] Liang, H., Guo, S., Tian, Y., Tu, J., Li, D., & Yan, C. (2020). Probabilistic seismic analysis of the deep sliding stability of a concrete gravity dam-foundation system. Advances in Civil Engineering. https://doi.org/10.1155/2020/885039810.1155/2020/8850398Search in Google Scholar

[7] Sen, U., Okeil, A.M. (2020). Effect of biaxial stress state on seismic fragility of concrete gravity dams. Earthquakes Struct., 18(3), 285-96. https://doi.org/10.12989/eas.2020.18.3.285Search in Google Scholar

[8] Mridha, S., Maity, D. (2014). Experimental investigation on nonlinear dynamic response of concrete gravity damreservoir system. Eng. Struct., 80, 289-97. https://doi.org/10.1016/j.engstruct.2014.09.01710.1016/j.engstruct.2014.09.017Search in Google Scholar

[9] Hariri-Ardebili, M.A. (2014). Impact of foundation nonlinearity on the crack propagation of high concrete dams. Soil Mech. Found. Eng., 51(2), 72-82. https://doi.org/10.1007/s11204-014-9257-910.1007/s11204-014-9257-9Search in Google Scholar

[10] Pirooznia, A., Moradloo, A.J. (2021). Seismic fracture analysis of concrete arch dams incorporating the loading rate dependent size effect of concrete. Struct. Eng. Mech. An Int’l J., 79(2), 169-98.Search in Google Scholar

[11] Omidi, O., Valliappan, S., Lotfi, V. (2013). Seismic cracking of concrete gravity dams by plastic-damage model using different damping mechanisms. Finite Elem. Anal. Des., 63, 80-97. https://doi.org/10.1016/j.finel.2012.08.00810.1016/j.finel.2012.08.008Search in Google Scholar

[12] Wang, G., Wang, Y., Lu, W., Yu, M., Wang, C. (2017). Deterministic 3D seismic damage analysis of Guandi concrete gravity dam: A case study. Eng. Struct., 148, 263-76. https://doi.org/10.1016/j.engstruct.2017.06.06010.1016/j.engstruct.2017.06.060Search in Google Scholar

[13] Ayari, M.L., Saouma, V.E. (1990). A fracture mechanics based seismic analysis of concrete gravity dams using discrete cracks. Eng. Fract. Mech., 35(1-3), 587-98. https://doi.org/10.1016/0013-7944(90)90233-710.1016/0013-7944(90)90233-7Search in Google Scholar

[14] Zhang, S., Wang, G., Yu, X. (2013). Seismic cracking analysis of concrete gravity dams with initial cracks using the extended finite element method. Eng. Struct., 56, 528-43. https://doi.org/10.1016/j.engstruct.2013.05.03710.1016/j.engstruct.2013.05.037Search in Google Scholar

[15] Wang, G., Wang, Y., Lu, W., Zhou, C., Chen, M., Yan, P. (2015). XFEM based seismic potential failure mode analysis of concrete gravity dam-water-foundation systems through incremental dynamic analysis. Eng. Struct., 98, 81-94. https://doi.org/10.1016/j.engstruct.2015.04.02310.1016/j.engstruct.2015.04.023Search in Google Scholar

[16] Wang, Y., Waisman, H. (2016). From diffuse damage to sharp cohesive cracks: A coupled XFEM framework for failure analysis of quasi-brittle materials. Comput. Methods Appl. Mech. Eng., 299, 57-89. https://doi.org/10.1016/j.cma.2015.10.01910.1016/j.cma.2015.10.019Search in Google Scholar

[17] Azmi, M., Paultre, P. (2002). Three-dimensional analysis of concrete dams including contraction joint nonlinearity. Eng. Struct., 24(6), 757-71. https://doi.org/10.1016/S0141-0296(02)00005-610.1016/S0141-0296(02)00005-6Search in Google Scholar

[18] Wang, H., Feng, M., Yang, H. (2012). Seismic nonlinear analyses of a concrete gravity dam with 3D full dam model. Bull. Earthq. Eng., 10(6), 1959-77. https://doi.org/10.1007/s10518-012-9377-410.1007/s10518-012-9377-4Search in Google Scholar

[19] Kartal, M.E. (2012). Three-dimensional earthquake analysis of roller-compacted concrete dams. Nat. Hazards Earth Syst. Sci., 12(7), 2369-88. https://doi.org/10.5194/nhess-12-2369-201210.5194/nhess-12-2369-2012Search in Google Scholar

[20] Arici, Y., Binici, B., Aldemir, A. (2014). Comparison of the expected damage patterns from two-and threedimensional nonlinear dynamic analyses of a roller compacted concrete dam. Struct. Infrastruct. Eng., 10(3), 305-15. https://doi.org/10.1080/15732479.2012.75392110.1080/15732479.2012.753921Search in Google Scholar

[21] Yilmazturk, S.M., Arici, Y., Binici, B. (2015). Seismic assessment of a monolithic RCC gravity dam including three dimensional dam-foundation-reservoir interaction. Eng. Struct., 100, 137-48. https://doi.org/10.1016/j.engstruct.2015.05.04110.1016/j.engstruct.2015.05.041Search in Google Scholar

[22] Ouzandja, D, Tiliouine, B, Belharizi, M and Kadri, M. (2017). Three-dimensional nonlinear seismic response of oued fodda concrete gravity dam considering contact elements at dam-reservoir interaction interface. Asian Journal of Civil Engineering , 18(6), 977-992.Search in Google Scholar

[23] Karabulut, M., Kartal,M.E. (2019). Seismic analysis of Roller Compacted Concrete (RCC) dams considering effect of viscous boundary conditions. Computers and Concrete, 27(2), 255-266. https://doi.org/10.12989/cac.2020.25.3.255Search in Google Scholar

[24] Liang, H., Tu, J., Guo, S., Liao, J., Li, D., Peng, S. (2020). Seismic fragility analysis of a High Arch DamFoundation System based on seismic instability failure mode. Soil Dyn.Earthq. Eng., 130, 105981. https://doi.org/10.1016/j.soildyn.2019.10598110.1016/j.soildyn.2019.105981Search in Google Scholar

[25] Ftima, M. Ben., Lafrance, S., Léger, P. (2020). Three-dimensional modelling of shear keys in concrete gravity dams using an advanced grillage method. Water Sci. Eng., 13(3), 223-32. https://doi.org/10.1016/j.wse.2020.09.00310.1016/j.wse.2020.09.003Search in Google Scholar

[26] Trainer, T.R. (2018). ANSYS. Finite Element Analysis. The Handbook of Software for Engineers and Scientists, CRC Press, 1321-57.Search in Google Scholar

[27] Willam, K.J. (1975). Constitutive model for the triaxialbehaviour of concrete. Proc. Intl. Assoc. Bridg.Structl.Engrs, 19, 1-30. https://doi.org/10.3151/coj1975.40.1_10910.3151/coj1975.40.1_109Search in Google Scholar

[28] Westergaard, H.M. (1933). Water pressures on dams during earthquakes. Trans. Am. Soc. Civ. Eng., 98(2), 418–33. https://doi.org/10.1061/TACEAT.000449610.1061/TACEAT.0004496Search in Google Scholar

[29] Drucker, D.C., Prager, W. (1952). Soil mechanics and plastic analysis or limit design. Q. Appl. Math., 10(2), 157-65.10.1090/qam/48291 Search in Google Scholar

eISSN:
2784-1391
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other