This work is licensed under the Creative Commons Attribution 4.0 International License.
Abdul, K. S. M., Jayasinghe, S. S., Chandana, E. P., Jayasumana, C., & De Silva, P. M. C. (2015). Arsenic and human health effects: A review. Environmental Toxicology and Pharmacology, 40(3), 828–846. https://doi.org/10.1016/j.etap.2015.09.016AbdulK. S. M.JayasingheS. S.ChandanaE. P.JayasumanaC.De SilvaP. M. C.2015Arsenic and human health effects: A reviewEnvironmental Toxicology and Pharmacology403828846https://doi.org/10.1016/j.etap.2015.09.016Search in Google Scholar
Bajda, T. (2010). Solubility of mimetite Pb5(AsO4)3Cl at 5–55 C. Environmental Chemistry, 7(3), 268–278. https://doi.org/10.1071/EN10021BajdaT.2010Solubility of mimetite Pb5(AsO4)3Cl at 5–55 CEnvironmental Chemistry73268278https://doi.org/10.1071/EN10021Search in Google Scholar
Bajda, T., Franus, W., Manecki, A., Manecki, M., Mozgawa, W., & Sikora, M. (2004). Sorption of heavy metals on natural zeolite and smectite-zeolite shale from the Polish Flysch Carpathians. Polish Journal of Environmental Studies, 13(Suppl III), 7–10. https://www.academia.edu/download/39747994/Sorption_of_heavy_metals_on_natural_zeol20151106-2731-1iqtzv0.pdfBajdaT.FranusW.ManeckiA.ManeckiM.MozgawaW.SikoraM.2004Sorption of heavy metals on natural zeolite and smectite-zeolite shale from the Polish Flysch CarpathiansPolish Journal of Environmental Studies13Suppl III710https://www.academia.edu/download/39747994/Sorption_of_heavy_metals_on_natural_zeol20151106-2731-1iqtzv0.pdfSearch in Google Scholar
Banning, A. (2021). Geogenic arsenic and uranium in Germany: Large-scale distribution control in sediments and groundwater. Journal of Hazardous Materials, 405, 124186. https://doi.org/10.1016/j.jhazmat.2020.124186BanningA.2021Geogenic arsenic and uranium in Germany: Large-scale distribution control in sediments and groundwaterJournal of Hazardous Materials405124186https://doi.org/10.1016/j.jhazmat.2020.124186Search in Google Scholar
Bektaş, N., & Kara, S. (2004). Removal of lead from aqueous solutions by natural clinoptilolite: Equilibrium and kinetic studies. Separation and Purification Technology, 39(3), 189–200. https://doi.org/10.1016/j.seppur.2003.12.001BektaşN.KaraS.2004Removal of lead from aqueous solutions by natural clinoptilolite: Equilibrium and kinetic studiesSeparation and Purification Technology393189200https://doi.org/10.1016/j.seppur.2003.12.001Search in Google Scholar
Cama, J., Ayora, C., Querol, X., & Ganor, J. (2005). Dissolution kinetics of synthetic zeolite NaP1 and its implication to zeolite treatment of contaminated waters. Environmental Science & Technology, 39(13), 4871–4877. https://doi.org/10.1021/es0500512CamaJ.AyoraC.QuerolX.GanorJ.2005Dissolution kinetics of synthetic zeolite NaP1 and its implication to zeolite treatment of contaminated watersEnvironmental Science & Technology391348714877https://doi.org/10.1021/es0500512Search in Google Scholar
Deliyanni, E. A., Bakoyannakis, D. N., Zouboulis, A. I., & Matis, K. A. (2003). Sorption of As (V) ions by akaganeite-type nanocrystals. Chemosphere, 50(1), 155–163. https://doi.org/10.1016/S0045-6535(02)00351-XDeliyanniE. A.BakoyannakisD. N.ZouboulisA. I.MatisK. A.2003Sorption of As (V) ions by akaganeite-type nanocrystalsChemosphere501155163https://doi.org/10.1016/S0045-6535(02)00351-XSearch in Google Scholar
Günay, A., Arslankaya, E., & Tosun, İ. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, 146(1–2), 362–371. https://doi.org/10.1016/j.jhazmat.2006.12.034GünayA.ArslankayaE.Tosunİ.2007Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kineticsJournal of Hazardous Materials1461–2362371https://doi.org/10.1016/j.jhazmat.2006.12.034Search in Google Scholar
Inglezakis, V. J., Stylianou, M. A., Gkantzou, D., & Loizidou, M. D. (2007). Removal of Pb (II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination, 210(1–3), 248–256. https://doi.org/10.1016/j.desal.2006.05.049InglezakisV. J.StylianouM. A.GkantzouD.LoizidouM. D.2007Removal of Pb (II) from aqueous solutions by using clinoptilolite and bentonite as adsorbentsDesalination2101–3248256https://doi.org/10.1016/j.desal.2006.05.049Search in Google Scholar
Kleszczewska-Zębala, A., Manecki, M., Bajda, T., Rakovan, J., & Borkiewicz, O. J. (2016). Mimetite formation from goethite-adsorbed ions. Microscopy and Microanalysis, 22(3), 698–705. https://doi.org/10.1017/S1431927616000829Kleszczewska-ZębalaA.ManeckiM.BajdaT.RakovanJ.BorkiewiczO. J.2016Mimetite formation from goethite-adsorbed ionsMicroscopy and Microanalysis223698705https://doi.org/10.1017/S1431927616000829Search in Google Scholar
Lenoble, V., Deluchat, V., Serpaud, B., & Bollinger, J. C. (2003). Arsenite oxidation and arsenate determination by the molybdenum blue method. Talanta, 61(3), 267–276. https://doi.org/10.1016/S0039-9140(03)00274-1LenobleV.DeluchatV.SerpaudB.BollingerJ. C.2003Arsenite oxidation and arsenate determination by the molybdenum blue methodTalanta613267276https://doi.org/10.1016/S0039-9140(03)00274-1Search in Google Scholar
Magalhães, M. C. F. (2002). Arsenic. An environmental problem limited by solubility. Pure and Applied Chemistry, 74(10), 1843–1850. https://doi.org/10.1351/pac200274101843MagalhãesM. C. F.2002Arsenic. An environmental problem limited by solubilityPure and Applied Chemistry741018431850https://doi.org/10.1351/pac200274101843Search in Google Scholar
Magalhães, M. C. F., & Silva, M. C. M. (2003). Stability of lead (II) arsenates. Monatshefte fuer Chemie/Chemical Monthly, 134(5), 735–743. https://doi.org/10.1007/s00706-002-0581-9MagalhãesM. C. F.SilvaM. C. M.2003Stability of lead (II) arsenatesMonatshefte fuer Chemie/Chemical Monthly1345735743https://doi.org/10.1007/s00706-002-0581-9Search in Google Scholar
Manecki, M., Bogucka, A., Bajda, T., & Borkiewicz, O. (2006). Decrease of Pb bioavailability in soils by addition of phosphate ions. Environmental Chemistry Letters, 3, 178–181. https://doi.org/10.1007/s10311-005-0030-1ManeckiM.BoguckaA.BajdaT.BorkiewiczO.2006Decrease of Pb bioavailability in soils by addition of phosphate ionsEnvironmental Chemistry Letters3178181https://doi.org/10.1007/s10311-005-0030-1Search in Google Scholar
Marciniak, H., Diduszko, R., & Kozak, M. (2006). XRAYAN Program do Rentgenowskiej Analizy Fazowej, Wersja 4.0.1. KOMA.MarciniakH.DiduszkoR.KozakM.2006XRAYAN Program do Rentgenowskiej Analizy Fazowej, Wersja 4.0.1KOMASearch in Google Scholar
Mozgawa, W., & Bajda, T. (2005). Spectroscopic study of heavy metals sorption on clinoptilolite. Physics and Chemistry of Minerals, 31(10), 706–713. https://doi.org/10.1007/s00269-004-0433-8MozgawaW.BajdaT.2005Spectroscopic study of heavy metals sorption on clinoptilolitePhysics and Chemistry of Minerals3110706713https://doi.org/10.1007/s00269-004-0433-8Search in Google Scholar
Mozgawa, W., Król, M., & Bajda, T. (2009). Application of IR spectra in the studies of heavy metal cations immobilization on natural sorbents. Journal of Molecular Structure, 924, 427–433. https://doi.org/10.1016/j.molstruc.2008.12.028MozgawaW.KrólM.BajdaT.2009Application of IR spectra in the studies of heavy metal cations immobilization on natural sorbentsJournal of Molecular Structure924427433https://doi.org/10.1016/j.molstruc.2008.12.028Search in Google Scholar
Murcott, S. (2012). Arsenic contamination in the world. IWA Publishing.MurcottS.2012Arsenic contamination in the worldIWA PublishingSearch in Google Scholar
Oter, O., & Akcay, H. (2007). Use of natural clinoptilolite to improve water quality: Sorption and selectivity studies of lead (II), copper (II), zinc (II), and nickel (II). Water Environment Research, 79(3), 329–335. https://doi.org/10.2175/106143006X111880OterO.AkcayH.2007Use of natural clinoptilolite to improve water quality: Sorption and selectivity studies of lead (II), copper (II), zinc (II), and nickel (II)Water Environment Research793329335https://doi.org/10.2175/106143006X111880Search in Google Scholar
Payne, K. B., & Abdel-Fattah, T. M. (2004). Adsorption of divalent lead ions by zeolites and activated carbon: Effects of pH, temperature, and ionic strength. Journal of Environmental Science and Health, Part A, 39(9), 2275–2291. https://doi.org/10.1081/ESE-200026265PayneK. B.Abdel-FattahT. M.2004Adsorption of divalent lead ions by zeolites and activated carbon: Effects of pH, temperature, and ionic strengthJournal of Environmental Science and Health, Part A39922752291https://doi.org/10.1081/ESE-200026265Search in Google Scholar
Payne, K. B., & Abdel-Fattah, T. M. (2005). Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: Effects of pH, temperature, and ionic strength. Journal of Environmental Science and Health, Part A, 40(4), 723–749. https://doi.org/10.1081/ESE-200048254PayneK. B.Abdel-FattahT. M.2005Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: Effects of pH, temperature, and ionic strengthJournal of Environmental Science and Health, Part A404723749https://doi.org/10.1081/ESE-200048254Search in Google Scholar
Ravenscroft, P., Brammer, H., & Richards, K. (2011). Arsenic pollution: A global synthesis. John Wiley & Sons.RavenscroftP.BrammerH.RichardsK.2011Arsenic pollution: A global synthesisJohn Wiley & SonsSearch in Google Scholar
Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International, 35(4), 743–759. https://doi.org/10.1016/j.envint.2009.01.005SharmaV. K.SohnM.2009Aquatic arsenic: Toxicity, speciation, transformations, and remediationEnvironment International354743759https://doi.org/10.1016/j.envint.2009.01.005Search in Google Scholar
Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568. https://doi.org/10.1016/S0883-2927(02)00018-5SmedleyP. L.KinniburghD. G.2002A review of the source, behaviour and distribution of arsenic in natural watersApplied Geochemistry175517568https://doi.org/10.1016/S0883-2927(02)00018-5Search in Google Scholar
Solińska, A., & Bajda, T. (2022). Modified zeolite as a sorbent for removal of contaminants from wet flue gas desulphurization wastewater. Chemosphere, 286, 131772. https://doi.org/10.1016/j.chemosphere.2021.131772SolińskaA.BajdaT.2022Modified zeolite as a sorbent for removal of contaminants from wet flue gas desulphurization wastewaterChemosphere286131772https://doi.org/10.1016/j.chemosphere.2021.131772Search in Google Scholar
Wilkin, R. T., & Barnes, H. L. (1998). Solubility and stability of zeolites in aqueous solution; I, Analcime, Na−, and K-clinoptilolite. American Mineralogist, 83(7–8), 746–761. https://doi.org/10.2138/am-1998-7-807WilkinR. T.BarnesH. L.1998Solubility and stability of zeolites in aqueous solution; I, Analcime, Na−, and K-clinoptiloliteAmerican Mineralogist837–8746761https://doi.org/10.2138/am-1998-7-807Search in Google Scholar
Wołowiec, M., Muir, B., Zięba, K., Bajda, T., Kowalik, M., & Franus, W. (2017). Experimental study on the removal of VOCs and PAHs by zeolites and surfactant-modified zeolites. Energy & Fuels, 31(8), 8803–8812. https://doi.org/10.1021/acs.energyfuels.7b01124WołowiecM.MuirB.ZiębaK.BajdaT.KowalikM.FranusW.2017Experimental study on the removal of VOCs and PAHs by zeolites and surfactant-modified zeolitesEnergy & Fuels31888038812https://doi.org/10.1021/acs.energyfuels.7b01124Search in Google Scholar
World Health Organization. (2018, February 15). Arsenic. https://www.who.int/news-room/fact-sheets/detail/arsenicWorld Health Organization2018February15Arsenichttps://www.who.int/news-room/fact-sheets/detail/arsenicSearch in Google Scholar