This work is licensed under the Creative Commons Attribution 4.0 International License.
Artemieva, I. M. (2003). Lithospheric structure, composition, and thermal regime of the East European Craton: Implications for the subsidence of the Russian platform. Earth and Planetary Science Letters, 213(3–4), 431–446. https://doi.org/10.1016/S0012-821X(03)00327-3ArtemievaI. M.2003Lithospheric structure, composition, and thermal regime of the East European Craton: Implications for the subsidence of the Russian platformEarth and Planetary Science Letters2133–4431446https://doi.org/10.1016/S0012-821X(03)00327-3Search in Google Scholar
Asch, K. (2005). IGME 5000: 1 : 5 Million International Geological Map of Europe and Adjacent Areas - final version for the internet. BGR, Hannover.AschK.2005IGME 5000: 1 : 5 Million International Geological Map of Europe and Adjacent Areas - final version for the internetBGRHannoverSearch in Google Scholar
Babuška, V., & Plomerová, J. (2004). The Sorgenfrei–Tornquist Zone as the mantle edge of Baltica lithosphere: new evidence from three-dimensional seismic anisotropy. Terra Nova, 16(5), 243–249. https://doi.org/10.1111/j.1365-3121.2004.00558.xBabuškaV.PlomerováJ.2004The Sorgenfrei–Tornquist Zone as the mantle edge of Baltica lithosphere: new evidence from three-dimensional seismic anisotropyTerra Nova165243249https://doi.org/10.1111/j.1365-3121.2004.00558.xSearch in Google Scholar
Bergelin, I., Obst, K., Söderlund, U., Larsson, K., & Johansson, L. (2011). Mesozoic rift magmatism in the North Sea region: 40Ar/39Ar geochronology of Scanian basalts and geochemical constraints. International Journal of Earth Sciences, 100(4), 787–804. https://doi.org/10.1007/s00531-010-0516-3BergelinI.ObstK.SöderlundU.LarssonK.JohanssonL.2011Mesozoic rift magmatism in the North Sea region: 40Ar/39Ar geochronology of Scanian basalts and geochemical constraintsInternational Journal of Earth Sciences1004787804https://doi.org/10.1007/s00531-010-0516-3Search in Google Scholar
Bingen, B., Viola, G., Möller, C., Vander Auwera, J., Laurent, A., & Yi, K. (2021). The Sveconorwegian orogeny. Gondwana Research, 90, 273–313. https://doi.org/10.1016/j.gr.2020.10.014BingenB.ViolaG.MöllerC.Vander AuweraJ.LaurentA.YiK.2021The Sveconorwegian orogenyGondwana Research90273313https://doi.org/10.1016/j.gr.2020.10.014Search in Google Scholar
Brey, G. P., Köhler, T., & Nickel, K. G. (1990). Geothermobarometry in Four-phase Lherzolites I. Experimental Results from 10 to 60kb. Journal of Petrology, 31(6), 1313–1352. https://doi.org/10.1093/petrology/31.6.1313BreyG. P.KöhlerT.NickelK. G.1990Geothermobarometry in Four-phase Lherzolites I. Experimental Results from 10 to 60kbJournal of Petrology31613131352https://doi.org/10.1093/petrology/31.6.1313Search in Google Scholar
Carpenter, R. L., Edgar, A. D., & Thibault, Y. (2002). Origin of spongy textures in clinopyroxene and spinel from mantle xenoliths, Hessian Depression, Germany. Mineralogy and Petrology, 74(2), 149–162. https://doi.org/10.1007/s007100200002CarpenterR. L.EdgarA. D.ThibaultY.2002Origin of spongy textures in clinopyroxene and spinel from mantle xenoliths, Hessian Depression, GermanyMineralogy and Petrology742149162https://doi.org/10.1007/s007100200002Search in Google Scholar
Coltorti, M., Bonadiman, C., Hinton, R. W., Siena, F., & Upton, B. G. J. (1999). Carbonatite Metasomatism of the Oceanic Upper Mantle: Evidence from Clinopyroxenes and Glasses in Ultramafic Xenoliths of Grande Comore, Indian Ocean. Journal of Petrology, 40(1), 133–165. https://doi.org/10.1093/petroj/40.1.133ColtortiM.BonadimanC.HintonR. W.SienaF.UptonB. G. J.1999Carbonatite Metasomatism of the Oceanic Upper Mantle: Evidence from Clinopyroxenes and Glasses in Ultramafic Xenoliths of Grande Comore, Indian OceanJournal of Petrology401133165https://doi.org/10.1093/petroj/40.1.133Search in Google Scholar
Deer, W. A., Howie, R. A., & Zussman, J. (1993). An Introduction to the Rock-Forming Minerals. Longman Scientific & Technical.DeerW. A.HowieR. A.ZussmanJ.1993An Introduction to the Rock-Forming MineralsLongman Scientific & TechnicalSearch in Google Scholar
Demouchy, S., Jacobsen, S., Gaillard, F., & Stern, C. (2006). Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology, 34, 429–432. https://doi.org/10.1130/G22386.1DemouchyS.JacobsenS.GaillardF.SternC.2006Rapid magma ascent recorded by water diffusion profiles in mantle olivineGeology34429432https://doi.org/10.1130/G22386.1Search in Google Scholar
Erlström, M. (2009). Tectonic evolution and geological framework of Scania. A review of interpretations and geological models. SGU-report 2009:10ErlströmM.2009Tectonic evolution and geological framework of Scania. A review of interpretations and geological modelsSGU-report 200910Search in Google Scholar
Falus, G., Szabó, C., & Vaselli, O. (2000). Mantle upwelling within the Pannonian Basin: evidence from xenolith lithology and mineral chemistry. Terra Nova, 12(6), 295–302. https://doi.org/10.1046/j.1365-3121.2000.00313.xFalusG.SzabóC.VaselliO.2000Mantle upwelling within the Pannonian Basin: evidence from xenolith lithology and mineral chemistryTerra Nova126295302https://doi.org/10.1046/j.1365-3121.2000.00313.xSearch in Google Scholar
Geological Survey of Sweden Digital Database. (2018) https://Www.Sgu.Se/En/Products/Geological-Data/.Geological Survey of Sweden Digital Database2018Https://Www.Sgu.Se/En/Products/Geological-Data/Search in Google Scholar
Hirose, K., & Kawamoto, T. (1995). Hydrous partial melting of lherzolite at 1 GPa: The effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters, 133(3), 463–473. https://doi.org/10.1016/0012-821X(95)00096-UHiroseK.KawamotoT.1995Hydrous partial melting of lherzolite at 1 GPa: The effect of H2O on the genesis of basaltic magmasEarth and Planetary Science Letters1333463473https://doi.org/10.1016/0012-821X(95)00096-USearch in Google Scholar
Ionov, D. A., Hofmann, A. W., & Shimizu, N. (1994). Metasomatism-induced Melting in Mantle Xenoliths from Mongolia. Journal of Petrology, 35(3), 753–785. https://doi.org/10.1093/petrology/35.3.753IonovD. A.HofmannA. W.ShimizuN.1994Metasomatism-induced Melting in Mantle Xenoliths from MongoliaJournal of Petrology353753785https://doi.org/10.1093/petrology/35.3.753Search in Google Scholar
Johansson, Å., Bogdanova, S., & Čečys, A. (2006). A revised geochronology for the Blekinge Province, southern Sweden. GFF, 128(4), 287–302. https://doi.org/10.1080/11035890601284287JohanssonÅ.BogdanovaS.ČečysA.2006A revised geochronology for the Blekinge Province, southern SwedenGFF1284287302https://doi.org/10.1080/11035890601284287Search in Google Scholar
Kelemen, P. B. (1990). Reaction Between Ultramafic Rock and Fractionating Basaltic Magma I. Phase Relations, the Origin of Calc-alkaline Magma Series, and the Formation of Discordant Dunite. Journal of Petrology, 31(1), 51–98. https://doi.org/10.1093/petrology/31.1.51KelemenP. B.1990Reaction Between Ultramafic Rock and Fractionating Basaltic Magma I. Phase Relations, the Origin of Calc-alkaline Magma Series, and the Formation of Discordant DuniteJournal of Petrology3115198https://doi.org/10.1093/petrology/31.1.51Search in Google Scholar
Le Maitre, R. W., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M. J., Sabine, P. A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A. R., & Zanettin, B. (1989). A Classification of Igneous Rocks and Glossary of Terms (p. 193). Blackwell.Le MaitreR. W.BatemanP.DudekA.KellerJ.Lameyre Le BasM. J.SabineP. A.SchmidR.SorensenH.StreckeisenA.WoolleyA. R.ZanettinB.1989A Classification of Igneous Rocks and Glossary of Terms193BlackwellSearch in Google Scholar
Lu, J., Zheng, J., Griffin, W. L., O’Reilly, S. Y., & Pearson, N. J. (2015). Microscale effects of melt infiltration into the lithospheric mantle: Peridotite xenoliths from Xilong, South China. Lithos, 232, 111–123. https://doi.org/10.1016/j.lithos.2015.06.013LuJ.ZhengJ.GriffinW. L.O’ReillyS. Y.PearsonN. J.2015Microscale effects of melt infiltration into the lithospheric mantle: Peridotite xenoliths from Xilong, South ChinaLithos232111123https://doi.org/10.1016/j.lithos.2015.06.013Search in Google Scholar
Marchev, P., Arai, S., Vaselli, O., Costa, F., Zanetti, A., & Downes, H. (2017). Metasomatic Reaction Phenomena from Entrainment to Surface Cooling: Evidence from Mantle Peridotite Xenoliths from Bulgaria. Journal of Petrology, 58(3), 599–640. https://doi.org/10.1093/petrology/egx028MarchevP.AraiS.VaselliO.CostaF.ZanettiA.DownesH.2017Metasomatic Reaction Phenomena from Entrainment to Surface Cooling: Evidence from Mantle Peridotite Xenoliths from BulgariaJournal of Petrology583599640https://doi.org/10.1093/petrology/egx028Search in Google Scholar
Matusiak-Malek, M., Puziewicz, J., Ntaflos, T., Grégoire, M., Benoit, M., & Klügel, A. (2014). Two contrasting lithologies in off-rift subcontinental lithospheric mantle beneath central Europec-the Krzeniów (SW Poland) case study. Journal of Petrology, 55(9), 1799–1828. https://doi.org/10.1093/petrology/egu042Matusiak-MalekM.PuziewiczJ.NtaflosT.GrégoireM.BenoitM.KlügelA.2014Two contrasting lithologies in off-rift subcontinental lithospheric mantle beneath central Europec-the Krzeniów (SW Poland) case studyJournal of Petrology55917991828https://doi.org/10.1093/petrology/egu042Search in Google Scholar
Mikrut, J., Matusiak-Małek, M., Puziewicz, J., Ntaflos, T., Grégoire, M., Benoit, M., & Johansson, L. (2019). Heterogeneous mantle beneath S Sweden-evidences from peridotitic xenoliths. In Geophysical Research Abstracts 21, EGU2019–15595MikrutJ.Matusiak-MałekM.PuziewiczJ.NtaflosT.GrégoireM.BenoitM.JohanssonL.2019Heterogeneous mantle beneath S Sweden-evidences from peridotitic xenolithsInGeophysical Research Abstracts21EGU2019–15595Search in Google Scholar
Pan, S., Zheng, J., Yin, Z., Griffin, W. L., Xia, M., Lin, A., & Zhang, H. (2018). Spongy texture in mantle clinopyroxene records decompression-induced melting. Lithos, 320–321, 144–154. https://doi.org/10.1016/j.lithos.2018.08.035PanS.ZhengJ.YinZ.GriffinW. L.XiaM.LinA.ZhangH.2018Spongy texture in mantle clinopyroxene records decompression-induced meltingLithos320–321144154https://doi.org/10.1016/j.lithos.2018.08.035Search in Google Scholar
Rehfeldt, T., Obst, K., & Johansson, L. (2007). Petrogenesis of ultramafic and mafic xenoliths from Mesozoic basanites in southern Sweden: Constraints from mineral chemistry. International Journal of Earth Sciences, 96(3), 433–450. https://doi.org/10.1007/s00531-006-0116-4RehfeldtT.ObstK.JohanssonL.2007Petrogenesis of ultramafic and mafic xenoliths from Mesozoic basanites in southern Sweden: Constraints from mineral chemistryInternational Journal of Earth Sciences963433450https://doi.org/10.1007/s00531-006-0116-4Search in Google Scholar
Shaw, C. S. J. (2009). Textural development of amphibole during breakdown reactions in a synthetic peridotite. Lithos, 110(1), 215–228. https://doi.org/10.1016/j.lithos.2009.01.002ShawC. S. J.2009Textural development of amphibole during breakdown reactions in a synthetic peridotiteLithos1101215228https://doi.org/10.1016/j.lithos.2009.01.002Search in Google Scholar
Shaw, C. S. J., & Dingwell, D. B. (2008). Experimental peridotite–melt reaction at one atmosphere: a textural and chemical study. Contributions to Mineralogy and Petrology, 155(2), 199–214. https://doi.org/10.1007/s00410-007-0237-1ShawC. S. J.DingwellD. B.2008Experimental peridotite–melt reaction at one atmosphere: a textural and chemical studyContributions to Mineralogy and Petrology1552199214https://doi.org/10.1007/s00410-007-0237-1Search in Google Scholar
Shaw, C. S. J., Heidelbach, F., & Dingwell, D. B. (2006). The origin of reaction textures in mantle peridotite xenoliths from Sal Island, Cape Verde: the case for “metasomatism” by the host lava. Contributions to Mineralogy and Petrology, 151(6), 681–697. https://doi.org/10.1007/s00410-006-0087-2ShawC. S. J.HeidelbachF.DingwellD. B.2006The origin of reaction textures in mantle peridotite xenoliths from Sal Island, Cape Verde: the case for “metasomatism” by the host lavaContributions to Mineralogy and Petrology1516681697https://doi.org/10.1007/s00410-006-0087-2Search in Google Scholar
Shaw, C. S. J., & Klügel, A. (2002). The pressure and temperature conditions and timing of glass formation in mantle-derived xenoliths from Baarley, West Eifel, Germany: the case for amphibole breakdown, lava infiltration and mineral – melt reaction. Mineralogy and Petrology, 74(2), 163–187. https://doi.org/10.1007/s007100200003ShawC. S. J.KlügelA.2002The pressure and temperature conditions and timing of glass formation in mantle-derived xenoliths from Baarley, West Eifel, Germany: the case for amphibole breakdown, lava infiltration and mineral – melt reactionMineralogy and Petrology742163187https://doi.org/10.1007/s007100200003Search in Google Scholar
Su, B. X., Zhang, H. F., Sakyi, P. A., Yang, Y. H., Ying, J. F., Tang, Y. J., Qin, K. Z., Xiao, Y., Zhao, X. M., Mao, Q., & Ma, Y. G. (2011). The origin of spongy texture in minerals of mantle xenoliths from the Western Qinling, central China. Contributions to Mineralogy and Petrology, 161(3), 465–482. https://doi.org/10.1007/s00410-010-0543-xSuB. X.ZhangH. F.SakyiP. A.YangY. H.YingJ. F.TangY. J.QinK. Z.XiaoY.ZhaoX. M.MaoQ.MaY. G.2011The origin of spongy texture in minerals of mantle xenoliths from the Western Qinling, central ChinaContributions to Mineralogy and Petrology1613465482https://doi.org/10.1007/s00410-010-0543-xSearch in Google Scholar
Tappe, S. (2004). Mesozoic mafic alkaline magmatism of southern Scandinavia. Contributions to Mineralogy and Petrology, 148(3), 312–334. https://doi.org/10.1007/s00410-004-0606-yTappeS.2004Mesozoic mafic alkaline magmatism of southern ScandinaviaContributions to Mineralogy and Petrology1483312334https://doi.org/10.1007/s00410-004-0606-ySearch in Google Scholar
Tappe, S., Smart, K. A., Stracke, A., Romer, R. L., Prelević, D., & van den Bogaard, P. (2016). Melt evolution beneath a rifted craton edge: 40Ar/39Ar geochronology and Sr–Nd–Hf–Pb isotope systematics of primitive alkaline basalts and lamprophyres from the SW Baltic Shield. Geochimica et Cosmochimica Acta, 173, 1–36. https://doi.org/10.1016/j.gca.2015.10.006TappeS.SmartK. A.StrackeA.RomerR. L.PrelevićD.van den BogaardP.2016Melt evolution beneath a rifted craton edge: 40Ar/39Ar geochronology and Sr–Nd–Hf–Pb isotope systematics of primitive alkaline basalts and lamprophyres from the SW Baltic ShieldGeochimica et Cosmochimica Acta173136https://doi.org/10.1016/j.gca.2015.10.006Search in Google Scholar