This work is licensed under the Creative Commons Attribution 4.0 International License.
Abu Quba, A.A., Goebel, M.O., Karagulyan, M., Miltner, A., Kästner, M., Bachmann, J., Schaumann, G.E., Diehl, D. (2023). Hypertonic stress induced changes of Pseudomonas fluorescens adhesion towards soil minerals studied by AFM. Scientific Reports, 13(1), 17146. https://doi.org/10.1038/s41598-023-44256-7Abu QubaA.A.GoebelM.O.KaragulyanM.MiltnerA.KästnerM.BachmannJ.SchaumannG.E.DiehlD. (2023). Hypertonic stress induced changes of Pseudomonas fluorescens adhesion towards soil minerals studied by AFM. Scientific Reports, 13(1), 17146. https://doi.org/10.1038/s41598-023-44256-7Search in Google Scholar
Alameen, M. B., Elraies, K. A., Almansour, A., Mohyaldinn, M. (2024). Experimental study of the silica dissolution onto sandstone formation: Influence of pH, salinity, and temperature on dissolution. Geoenergy Science and Engineering, 234, 212632. https://doi.org/10.1016/j.geoen.2024.212632AlameenM. B.ElraiesK. A.AlmansourA.MohyaldinnM. (2024). Experimental study of the silica dissolution onto sandstone formation: Influence of pH, salinity, and temperature on dissolution. Geoenergy Science and Engineering, 234, 212632. https://doi.org/10.1016/j.geoen.2024.212632Search in Google Scholar
Ams, D.A., Maurice, P.A., Hersman, L.E., Forsythe, J.H. (2002). Siderophore production by an aerobic Pseudomonas mendocina bacterium in the presence of kaolinite. Chemical Geology, 188(3-4), 161-170. https://doi.org/10.1016/S0009-2541(02)00077-3AmsD.A.MauriceP.A.HersmanL.E.ForsytheJ.H. (2002). Siderophore production by an aerobic Pseudomonas mendocina bacterium in the presence of kaolinite. Chemical Geology, 188(3-4), 161–170. https://doi.org/10.1016/S0009-2541(02)00077-3Search in Google Scholar
Bertani, G. (2004). Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. Journal of bacteriology, 186(3), 595-600. https://doi.org/10.1128/jb.186.3.595-600.2004BertaniG. (2004). Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. Journal of bacteriology, 186(3), 595–600. https://doi.org/10.1128/jb.186.3.595-600.2004Search in Google Scholar
Berthelin, J., Belgy, G. (1979). Microbial degradation of phyllosilicates during simulated podzolization. Geoderma, 21(4), 297-310. https://doi.org/10.1016/0016-7061(79)90004-1BerthelinJ.BelgyG. (1979). Microbial degradation of phyllosilicates during simulated podzolization. Geoderma, 21(4), 297–310. https://doi.org/10.1016/0016-7061(79)90004-1Search in Google Scholar
Blott, S.J., Pye, K. (2001). Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes Landforms, 26(11), 1237-1248. https://doi.org/10.1002/esp.261BlottS.J.PyeK. (2001). Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes Landforms, 26(11), 1237–1248. https://doi.org/10.1002/esp.261Search in Google Scholar
Bosch-Roig, P., Lustrato, G., Zanardini, E., Ranalli, G. (2015). Biocleaning of Cultural Heritage stone surfaces and frescoes: which delivery system can be the most appropriate?. Annals of Microbiology, 65, 1227-1241. 10.1007/s13213-014-0938-4Bosch-RoigP.LustratoG.ZanardiniE.RanalliG. (2015). Biocleaning of Cultural Heritage stone surfaces and frescoes: which delivery system can be the most appropriate?. Annals of Microbiology, 65, 1227–1241. 10.1007/s13213-014-0938-4Open DOISearch in Google Scholar
Bosma, T.N.P., Middeldorp, P.J.M., Schraa, G., Zehnder, A.J.B. (1997). Mass transfer limitation of biotransformation: Quantifying bioavailability. Environmental Science & Technology, 31(1), 248-252. https://doi.org/10.1021/es960383uBosmaT.N.P.MiddeldorpP.J.M.SchraaG.ZehnderA.J.B. (1997). Mass transfer limitation of biotransformation: Quantifying bioavailability. Environmental Science & Technology, 31(1), 248–252. https://doi.org/10.1021/es960383uSearch in Google Scholar
Bradley, S.M., Middleton, A.P. (1988). A study of the deterioration of Egyptian limestone sculpture. Journal of the American Institute for Conservation, 27(2), 64-86. https://doi.org/10.1179/019713688806046319BradleyS.M.MiddletonA.P. (1988). A study of the deterioration of Egyptian limestone sculpture. Journal of the American Institute for Conservation, 27(2), 64–86. https://doi.org/10.1179/019713688806046319Search in Google Scholar
Cámara, B., de los Ríos, A., Urizal, M., de Buergo, M.Á., Varas, M.J., Fort, R., Ascaso, C. (2011). Characterizing the Microbial Colonization of a Dolostone Quarry: Implications for Stone Biodeterioration and Response to Biocide Treatments. Microbial Ecology, 62, 299-313. https://doi.org/10.1007/s00248-011-9815-xCámaraB.de los RíosA.UrizalM.de BuergoM.Á.VarasM.J.FortR.AscasoC. (2011). Characterizing the Microbial Colonization of a Dolostone Quarry: Implications for Stone Biodeterioration and Response to Biocide Treatments. Microbial Ecology, 62, 299–313. https://doi.org/10.1007/s00248-011-9815-xSearch in Google Scholar
Cappitelli, F., Cattò, C., Villa, F. (2020). The control of cultural heritage microbial deterioration. Microorganisms, 8(10), 1542. https://doi.org/10.3390/microorganisms8101542CappitelliF.CattòC.VillaF. (2020). The control of cultural heritage microbial deterioration. Microorganisms, 8(10), 1542. https://doi.org/10.3390/microorganisms8101542Search in Google Scholar
Casey, W.H., Banfield, J.F., Westrich, H.R., McLaughlin, L. (1993). What do dissolution experiments tell us about natural weathering? Chemical Geology, 105(1-3), 1-15. https://doi.org/10.1016/0009-2541(93)90115-YCaseyW.H.BanfieldJ.F.WestrichH.R.McLaughlinL. (1993). What do dissolution experiments tell us about natural weathering?Chemical Geology, 105(1-3), 1–15. https://doi.org/10.1016/0009-2541(93)90115-YSearch in Google Scholar
Chen, X., Bai, F., Huang, J., Lu, Y., Wu, Y., Yu, J., Bai, S. (2021). The Organisms on Rock Cultural Heritages: Growth and Weathering. Geoheritage, 13(3), 56. https://doi.org/10.1007/s12371-021-00588-2ChenX.BaiF.HuangJ.LuY.WuY.YuJ.BaiS. (2021). The Organisms on Rock Cultural Heritages: Growth and Weathering. Geoheritage, 13(3), 56. https://doi.org/10.1007/s12371-021-00588-2Search in Google Scholar
Cheng, Y., Feng, G., Moraru, C. I. (2019). Micro-and nanotopography sensitive bacterial attachment mechanisms: a review. Frontiers in microbiology, 10, 191. 10.3389/fmicb.2019.00191ChengY.FengG.MoraruC. I. (2019). Micro-and nanotopography sensitive bacterial attachment mechanisms: a review. Frontiers in microbiology, 10, 191. 10.3389/fmicb.2019.00191Open DOISearch in Google Scholar
Cherblanc, F., Berthonneau, J., Bromblet, P., Huon, V. (2016). Influence of water content on the mechanical behaviour of limestone: Role of the clay minerals content. Rock Mechanics and Rock Engineering, 49, 2033-2042. https://doi.org/10.1007/s00603-015-0911-yCherblancF.BerthonneauJ.BrombletP.HuonV. (2016). Influence of water content on the mechanical behaviour of limestone: Role of the clay minerals content. Rock Mechanics and Rock Engineering, 49, 2033–2042. https://doi.org/10.1007/s00603-015-0911-ySearch in Google Scholar
Chigira, M., Oyama, T. (2000). Mechanism and effect of chemical weathering of sedimentary rocks. Developments in Geotechnical Engineering, 84, 267278. https://doi.org/10.1016/S0013-7952(99)00102-7ChigiraM.OyamaT. (2000). Mechanism and effect of chemical weathering of sedimentary rocks. Developments in Geotechnical Engineering, 84, 267278. https://doi.org/10.1016/S0013-7952(99)00102-7Search in Google Scholar
Cuadros, J. (2017). Clay minerals interaction with microorganisms: a review. Clay Minerals, 52(2), 235-261. https://doi.org/10.1180/claymin.2017.052.2.05CuadrosJ. (2017). Clay minerals interaction with microorganisms: a review. Clay Minerals, 52(2), 235–261. https://doi.org/10.1180/claymin.2017.052.2.05Search in Google Scholar
Dakal, T.C., Cameotra, S.S. (2012). Microbially induced deterioration of architectural heritages: Routes and mechanisms involved. Environmental Sciences Europe, 24, 1-13. https://doi.org/10.1186/2190-4715-24-36DakalT.C.CameotraS.S. (2012). Microbially induced deterioration of architectural heritages: Routes and mechanisms involved. Environmental Sciences Europe, 24, 1–13. https://doi.org/10.1186/2190-4715-24-36Search in Google Scholar
Davis, K.J., Nealson, K.H., Lüttge, A. (2007). Calcite and dolomite dissolution rates in the context of microbemineral surface interactions. Geobiology, 5(2), 191-205. https://doi.org/10.1111/j.1472-4669.2007.00112.xDavisK.J.NealsonK.H.LüttgeA. (2007). Calcite and dolomite dissolution rates in the context of microbemineral surface interactions. Geobiology, 5(2), 191–205. https://doi.org/10.1111/j.1472-4669.2007.00112.xSearch in Google Scholar
De Belie, N. (2010). Microorganisms versus stony materials: A love-hate relationship. Materials and Structures, 43, 1191-1202. https://doi.org/10.1617/s11527-010-9654-0De BelieN. (2010). Microorganisms versus stony materials: A love-hate relationship. Materials and Structures, 43, 1191–1202. https://doi.org/10.1617/s11527-010-9654-0Search in Google Scholar
de la Torre, M.A., Gomez-Alarcon, G., Vizcaino, C., Garcia, T.T. (1992). Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry, 19, 129-147. https://doi.org/10.1007/BF00000875de la TorreM.A.Gomez-AlarconG.VizcainoC.GarciaT.T. (1992). Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry, 19, 129–147. https://doi.org/10.1007/BF00000875Search in Google Scholar
Demkina, T.S., Khomutova, T.E., Kashirskaya, N.N., Stretovich, I. V., Demkin, V.A. (2010). Microbiological investigations of paleosols of archeological monuments in the steppe zone. Eurasian Soil Science, 43, 194-201. https://doi.org/10.1134/S1064229310020092DemkinaT.S.KhomutovaT.E.KashirskayaN.N.StretovichI. V.DemkinV.A. (2010). Microbiological investigations of paleosols of archeological monuments in the steppe zone. Eurasian Soil Science, 43, 194–201. https://doi.org/10.1134/S1064229310020092Search in Google Scholar
Dunham, R.J. (1962). Classification of Carbonate Rocks According to Depositional Textures, in: Classification of Carbonate Rocks-A Symposium, 108-121.DunhamR.J. (1962). Classification of Carbonate Rocks According to Depositional Textures, in: Classification of Carbonate Rocks-A Symposium, 108–121.Search in Google Scholar
El-Derby, A.A.O.D., Mansour, M.M.A., Salem, M.Z.M. (2016). Investigation the microbial deterioration of sandstone from the osirion’s sarcophagus chamber as affected by rising ground water level. Mediterranean Archaeology and Archaeometry, 16(1), 273-273 https://doi.org/10.5281/zenodo.46360El-DerbyA.A.O.D.MansourM.M.A.SalemM.Z.M. (2016). Investigation the microbial deterioration of sandstone from the osirion’s sarcophagus chamber as affected by rising ground water level. Mediterranean Archaeology and Archaeometry, 16(1), 273–273https://doi.org/10.5281/zenodo.46360Search in Google Scholar
El-Gohary, M. (2015). Effective roles of some deterioration agents affecting edfu royal birth house “Mammisi. International Journal of Conservation Science, 6(3), 349-368.El-GoharyM. (2015). Effective roles of some deterioration agents affecting edfu royal birth house “Mammisi. International Journal of Conservation Science, 6(3), 349–368.Search in Google Scholar
El-Shayeb, H., El-Hemaly, I.A., Abdel Aal, E., Saleh, A., Khashaba, A., Odah, H., Mostafa, R. (2013). Magnetization of three Nubia Sandstone formations from Central Western Desert of Egypt. NRIAG Journal of Astronomy and Geophysics, 2(1), 77-87. https://doi.org/10.1016/j.nrjag.2013.06.011El-ShayebH.El-HemalyI.A.Abdel AalE.SalehA.KhashabaA.OdahH.MostafaR. (2013). Magnetization of three Nubia Sandstone formations from Central Western Desert of Egypt. NRIAG Journal of Astronomy and Geophysics, 2(1), 77–87. https://doi.org/10.1016/j.nrjag.2013.06.011Search in Google Scholar
Emberling, G., Williams, B.B. (2021). The Oxford Handbook of Ancient Nubia. https://doi.org/10.1093/oxfordhb/9780190496272.001.0001EmberlingG.WilliamsB.B. (2021). The Oxford Handbook of Ancient Nubia. https://doi.org/10.1093/oxfordhb/9780190496272.001.0001Search in Google Scholar
Fitzner, B., Heinrichs, K. (2001). Damage diagnosis at stone monuments - Weathering forms, damage categories and damage indices. Acta-Universitatis Carolinae Geologica, 1, 12-13.FitznerB.HeinrichsK. (2001). Damage diagnosis at stone monuments - Weathering forms, damage categories and damage indices. Acta-Universitatis Carolinae Geologica, 1, 12–13.Search in Google Scholar
Flemming, H.C., van Hullebusch, E.D., Neu, T.R., Nielsen, P.H., Seviour, T., Stoodley, P., Wingender, J., Wuertz, S. (2023). The biofilm matrix: multitasking in a shared space. Nature Reviews Microbiology, 21(2), 70-86. https://doi.org/10.1038/s41579-022-00791-0FlemmingH.C.van HullebuschE.D.NeuT.R.NielsenP.H.SeviourT.StoodleyP.WingenderJ.WuertzS. (2023). The biofilm matrix: multitasking in a shared space. Nature Reviews Microbiology, 21(2), 70–86. https://doi.org/10.1038/s41579-022-00791-0Search in Google Scholar
Fletcher, M. (1985). Effect of Solid Surfaces on the Activity of Attached Bacteria, In Bacterial adhesion: mechanisms and physiological significance (pp. 339-362). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-6514-7_12FletcherM. (1985). Effect of Solid Surfaces on the Activity of Attached Bacteria, In Bacterial adhesion: mechanisms and physiological significance (pp. 339–362). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-6514-7_12Search in Google Scholar
Folk, R.L., Ward, W.C. (1957). Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research, 27, 3-26. https://doi.org/10.1306/74d70646-2b21-11d7-8648000102c1865dFolkR.L.WardW.C. (1957). Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research, 27, 3–26. https://doi.org/10.1306/74d70646-2b21-11d7-8648000102c1865dSearch in Google Scholar
Folk, R.L. (2) (1959). Practical Petrographic Classification of Limestones. American Association of Petroleum Geology Bulletin, 43(1), 1-38. https://doi.org/10.1306/0bda5c36-16bd-11d7-8645000102c1865dFolkR.L. (2) (1959). Practical Petrographic Classification of Limestones. American Association of Petroleum Geology Bulletin, 43(1), 1–38. https://doi.org/10.1306/0bda5c36-16bd-11d7-8645000102c1865dSearch in Google Scholar
Friolo, K.H., Stuart, B., Ray, A. (2003). Characterisation of weathering of Sydney sandstones in heritage buildings. Journal of Cultural Heritage, 4(3), 211-220. https://doi.org/10.1016/S1296-2074(03)00047-5FrioloK.H.StuartB.RayA. (2003). Characterisation of weathering of Sydney sandstones in heritage buildings. Journal of Cultural Heritage, 4(3), 211–220. https://doi.org/10.1016/S1296-2074(03)00047-5Search in Google Scholar
Ganeshan, G., Manoj Kumar, A. (2005). Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. Journal of Plant Interactions, 1(3), 123-134. https://doi.org/10.1080/17429140600907043GaneshanG.Manoj KumarA. (2005). Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. Journal of Plant Interactions, 1(3), 123–134. https://doi.org/10.1080/17429140600907043Search in Google Scholar
Gaylarde, C.C., Baptista-Neto, J.A. (2021). Microbiologically induced aesthetic and structural changes to dimension stone. Npj Materials Degradation, 5(1), 33. https://doi.org/10.1038/s41529-021-00180-7GaylardeC.C.Baptista-NetoJ.A. (2021). Microbiologically induced aesthetic and structural changes to dimension stone. Npj Materials Degradation, 5(1), 33. https://doi.org/10.1038/s41529-021-00180-7Search in Google Scholar
Geweely, N.S.I., Afifi, H.A.M. (2011). Bioremediation of some deterioration products from sandstone of archeological Karnak temple using stimulated irradiated alkalo-thermophilic purified microbial enzymes. Geomicrobiology Journal, 28(1), 56-67. https://doi.org/10.1080/01490451.2010.498296GeweelyN.S.I.AfifiH.A.M. (2011). Bioremediation of some deterioration products from sandstone of archeological Karnak temple using stimulated irradiated alkalo-thermophilic purified microbial enzymes. Geomicrobiology Journal, 28(1), 56–67. https://doi.org/10.1080/01490451.2010.498296Search in Google Scholar
Gleeson, D.B., Kennedy, N.M., Clipson, N., Melville, K., Gadd, G.M., McDermott, F.P. (2006). Characterization of bacterial community structure on a weathered pegmatitic granite. Microbial Ecology, 51, 526-534. https://doi.org/10.1007/s00248-006-9052-xGleesonD.B.KennedyN.M.ClipsonN.MelvilleK.GaddG.M.McDermottF.P. (2006). Characterization of bacterial community structure on a weathered pegmatitic granite. Microbial Ecology, 51, 526–534. https://doi.org/10.1007/s00248-006-9052-xSearch in Google Scholar
Gong, Q., Deng, J., Han, M., Yang, L., Wang, W. (2012). Dissolution of sandstone powders in deionised water over the range 50–350C. Applied geochemistry, 27(12), 2463-2475. https://doi.org/10.1016/j.apgeochem.2012.08.011GongQ.DengJ.HanM.YangL.WangW. (2012). Dissolution of sandstone powders in deionised water over the range 50–350C. Applied geochemistry, 27(12), 2463–2475. https://doi.org/10.1016/j.apgeochem.2012.08.011Search in Google Scholar
Grybos, M., Billard, P., Desobry-Banon, S., Michot, L.J., Lenain, J.F., Mustin, C. (2011). Bio-dissolution of colloidal-size clay minerals entrapped in microporous silica gels. Journal of Colloid and Interface Science, 362(2), 317-324. https://doi.org/10.1016/j.jcis.2011.07.031GrybosM.BillardP.Desobry-BanonS.MichotL.J.LenainJ.F.MustinC. (2011). Bio-dissolution of colloidal-size clay minerals entrapped in microporous silica gels. Journal of Colloid and Interface Science, 362(2), 317–324. https://doi.org/10.1016/j.jcis.2011.07.031Search in Google Scholar
Harrell, J.A. (2012). Building stones. UCLA Encycl. Egyptol. 1.HarrellJ.A. (2012). Building stones. UCLA Encycl. Egyptol. 1.Search in Google Scholar
Harrell, J.A. (2016). Varieties and sources of sandstone used in Ancient Egyptian temples. Journal of Ancient Egyptian Architecture, 1, 11-37. https://doi.org/10.1093/oxfordhb/9780190496272.013.46HarrellJ.A. (2016). Varieties and sources of sandstone used in Ancient Egyptian temples. Journal of Ancient Egyptian Architecture, 1, 11–37. https://doi.org/10.1093/oxfordhb/9780190496272.013.46Search in Google Scholar
Harrell, J.A., Mohamed, A.A. (2021). Exploitation of geological resources: Ancient mines and quarries in nubia, in: The Oxford Handbook of Ancient Nubia. https://doi.org/10.1093/oxfordhb/9780190496272.013.46HarrellJ.A.MohamedA.A. (2021). Exploitation of geological resources: Ancient mines and quarries in nubia, in: The Oxford Handbook of Ancient Nubia. https://doi.org/10.1093/oxfordhb/9780190496272.013.46Search in Google Scholar
Hua, W., Dong, S., Li, Y., Xu, J., Wang, Q. (2015). The influence of cyclic wetting and drying on the fracture toughness of sandstone. International Journal of Rock Mechanics and Mining Sciences, 78, 331-335. https://doi.org/10.1016/j.ijrmms.2015.06.010HuaW.DongS.LiY.XuJ.WangQ. (2015). The influence of cyclic wetting and drying on the fracture toughness of sandstone. International Journal of Rock Mechanics and Mining Sciences, 78, 331–335. https://doi.org/10.1016/j.ijrmms.2015.06.010Search in Google Scholar
ICDD (2003). The Powder Diffraction File. Int. Cent. Diffr. Data, Newt. Square, Pennsylvania, USA.ICDD (2003). The Powder Diffraction File. Int. Cent. Diffr. Data, Newt. suquare, Pennsylvania, USA.Search in Google Scholar
Jaber, H., Maalouf, E., Yehya, A., Salah, M. K., Bou-Hamdan, K., Harb, M. (2024). The effect of temperature on the mechanical and hydraulic properties of sedimentary rocks. Geoenergy Science and Engineering, 235, 212702. https://doi.org/10.1016/j.geoen.2024.212702JaberH.MaaloufE.YehyaA.SalahM. K.Bou-HamdanK.HarbM. (2024). The effect of temperature on the mechanical and hydraulic properties of sedimentary rocks. Geoenergy Science and Engineering, 235, 212702. https://doi.org/10.1016/j.geoen.2024.212702Search in Google Scholar
Jage, C. R., Zipper, C. E., Noble, R. (2001). Factors affecting alkalinity generation by successive alkalinity-producing systems: Regression analysis. Journal of environmental Quality, 30(3), 1015-1022. https://doi.org/10.2134/jeq2001.3031015xJageC. R.ZipperC. E.NobleR. (2001). Factors affecting alkalinity generation by successive alkalinity-producing systems: Regression analysis. Journal of environmental Quality, 30(3), 1015–1022. https://doi.org/10.2134/jeq2001.3031015xSearch in Google Scholar
Jones, A.A., Bennett, P.C. (2014). Mineral Microniches Control the Diversity of Subsurface Microbial Populations. Geomicrobiology Journal, 31(3), 246-261. https://doi.org/10.1080/01490451.2013.809174JonesA.A.BennettP.C. (2014). Mineral Microniches Control the Diversity of Subsurface Microbial Populations. Geomicrobiology Journal, 31(3), 246–261. https://doi.org/10.1080/01490451.2013.809174Search in Google Scholar
Jroundi, F., Elert, K., Ruiz-Agudo, E., Gonzalez-Muñoz, M. T., Rodriguez-Navarro, C. (2020). Bacterial diversity evolution in maya plaster and stone following a bioconservation treatment. Frontiers in Microbiology, 11, 599144. 10.3389/fmicb.2020.599144JroundiF.ElertK.Ruiz-AgudoE.Gonzalez-MuñozM. T.Rodriguez-NavarroC. (2020). Bacterial diversity evolution in maya plaster and stone following a bioconservation treatment. Frontiers in Microbiology, 11, 599144. 10.3389/fmicb.2020.599144Open DOISearch in Google Scholar
Jroundi, F., Fernández-Vivas, A., Rodriguez-Navarro, C., Bedmar, E. J., González-Muñoz, M. T. (2010). Bioconservation of deteriorated monumental calcarenite stone and identification of bacteria with carbonatogenic activity. Microbial ecology, 60, 39-54. DOI 10.1007/s00248-010-9665-yJroundiF.Fernández-VivasA.Rodriguez-NavarroC.BedmarE. J.González-MuñozM. T. (2010). Bioconservation of deteriorated monumental calcarenite stone and identification of bacteria with carbonatogenic activity. Microbial ecology, 60, 39–54. DOI 10.1007/s00248-010-9665-yOpen DOISearch in Google Scholar
Kalinowski, B.E., Liermann, L.J., Givens, S., Brantley, S.L. (2000). Rates of bacteria-promoted solubilization of Fe from minerals: A review of problems and approaches, in: Chemical Geology, 169(3-4), 357-370. https://doi.org/10.1016/S0009-2541(00)00214-XKalinowskiB.E.LiermannL.J.GivensS.BrantleyS.L. (2000). Rates of bacteria-promoted solubilization of Fe from minerals: A review of problems and approaches, in: Chemical Geology, 169(3-4), 357–370. https://doi.org/10.1016/S0009-2541(00)00214-XSearch in Google Scholar
Karlshausen, C., De Putter, T. (2020). From Limestone to Sandstone – Building Stone of Theban Architecture During the Reigns of Hatshepsut and Thutmosis III. J. The Journal of Egyptian Archaeology, 106(1-2), 215-227. https://doi.org/10.1177/0307513320978411KarlshausenC.De PutterT. (2020). From Limestone to Sandstone – Building Stone of Theban Architecture During the Reigns of Hatshepsut and Thutmosis III. J. The Journal of Egyptian Archaeology, 106(1-2), 215–227. https://doi.org/10.1177/0307513320978411Search in Google Scholar
Keller, W.D., Hanson, R.F., Huang, W.H., Cervantes, A. (1971). Sequential active alteration of rhyolitic volcanic rock to endellite and a precursor phase of it at a spring in Michoacan, Mexico. Clays and Clay Minerals, 19, 121127. https://doi.org/10.1346/ccmn.1971.0190209KellerW.D.HansonR.F.HuangW.H.CervantesA. (1971). Sequential active alteration of rhyolitic volcanic rock to endellite and a precursor phase of it at a spring in Michoacan, Mexico. Clays and Clay Minerals, 19, 121127. https://doi.org/10.1346/ccmn.1971.0190209Search in Google Scholar
Khalil, M. M., Mekawey, A. A., Alatawi, F. A. (2022). Microbial Deterioration of the Archaeological Nujoumi Dome (Egypt-Aswan): Identification and Suggested Control Treatments by Natural Products. Journal of Pure & Applied Microbiology, 16(2). https://doi.org/10.22207/JPAM.16.2.22KhalilM. M.MekaweyA. A.AlatawiF. A. (2022). Microbial Deterioration of the Archaeological Nujoumi Dome (Egypt-Aswan): Identification and Suggested Control Treatments by Natural Products. Journal of Pure & Applied Microbiology, 16(2). https://doi.org/10.22207/JPAM.16.2.22Search in Google Scholar
Klemm, D.D., Klemm, R. (2001). The building stones of ancient Egypt-A gift of its geology. Journal of African Earth Sciences, 33(3-4), 631-642. https://doi.org/10.1016/s0899-5362(01)00085-9KlemmD.D.KlemmR. (2001). The building stones of ancient Egypt-A gift of its geology. Journal of African Earth Sciences, 33(3-4), 631–642. https://doi.org/10.1016/s0899-5362(01)00085-9Search in Google Scholar
Lewin, S.Z., Winkler, E.M. (1974). Stone: Properties, Durability in Man’s Environment. Studies in Conservation, 19(4). https://doi.org/10.2307/1505733LewinS.Z.WinklerE.M. (1974). Stone: Properties, Durability in Man’s Environment. Studies in Conservation, 19(4). https://doi.org/10.2307/1505733Search in Google Scholar
Lin, M.L., Jeng, F.S., Tsai, L.S., Huang, T.H. (2005). Wetting weakening of tertiary sandstones-Microscopic mechanism. Environmental Geology, 48, 265-275. https://doi.org/10.1007/s00254-005-1318-yLinM.L.JengF.S.TsaiL.S.HuangT.H. (2005). Wetting weakening of tertiary sandstones-Microscopic mechanism. Environmental Geology, 48, 265–275. https://doi.org/10.1007/s00254-005-1318-ySearch in Google Scholar
Malmström, M.E., Destouni, G., Banwart, S.A., Strömberg, B.H.E. (2000). Resolving the scale-dependence of mineral weathering rates. Environmental Science & Technology, 34(7), 1375-1378. https://doi.org/10.1021/es990682uMalmströmM.E.DestouniG.BanwartS.A.StrömbergB.H.E. (2000). Resolving the scale-dependence of mineral weathering rates. Environmental Science & Technology, 34(7), 1375–1378. https://doi.org/10.1021/es990682uSearch in Google Scholar
Matsuzawa, M., Chigira, M. (2020). Weathering mechanism of arenite sandstone with sparse calcite cement content. Catena, 187, 104367. https://doi.org/10.1016/j.catena.2019.104367MatsuzawaM.ChigiraM. (2020). Weathering mechanism of arenite sandstone with sparse calcite cement content. Catena, 187, 104367. https://doi.org/10.1016/j.catena.2019.104367Search in Google Scholar
Maurice, P.A., Vierkorn, M.A., Hersman, L.E., Fulghum, J.E. (2001). Dissolution of well and poorly ordered kaolinites by an aerobic bacterium. Chemical Geology, 180(1-4), 81-97. https://doi.org/10.1016/S0009-2541(01)00307-2MauriceP.A.VierkornM.A.HersmanL.E.FulghumJ.E. (2001). Dissolution of well and poorly ordered kaolinites by an aerobic bacterium. Chemical Geology, 180(1-4), 81–97. https://doi.org/10.1016/S0009-2541(01)00307-2Search in Google Scholar
Mitchell, A., Sass, O. (2024). Rock weathering: The effects of varying rock moisture on controlled weathering cycles in low porosity limestone. Geomorphology, 457, 109149. https://doi.org/10.1016/j.geomorph.2024.109149MitchellA.SassO. (2024). Rock weathering: The effects of varying rock moisture on controlled weathering cycles in low porosity limestone. Geomorphology, 457, 109149. https://doi.org/10.1016/j.geomorph.2024.109149Search in Google Scholar
Mueller, B. (2015). Experimental Interactions Between Clay Minerals and Bacteria: A Review. Pedosphere, 25(6), 799-810. https://doi.org/10.1016/S1002-0160(15)30061-8MuellerB. (2015). Experimental Interactions Between Clay Minerals and Bacteria: A Review. Pedosphere, 25(6), 799–810. https://doi.org/10.1016/S1002-0160(15)30061-8Search in Google Scholar
Nkoh, J. N., Shi, R. Y., Li, J. Y., Xu, R. K. (2024). Combined application of Pseudomonas fluorescens and urea can mitigate rapid acidification of cropland Ultisol. Science of The Total Environment, 906, 167652. https://doi.org/10.1016/j.scitotenv.2023.167652NkohJ. N.ShiR. Y.LiJ. Y.XuR. K. (2024). Combined application of Pseudomonas fluorescens and urea can mitigate rapid acidification of cropland Ultisol. Science of The Total Environment, 906, 167652. https://doi.org/10.1016/j.scitotenv.2023.167652Search in Google Scholar
Niu, Q., Hu, M., He, J., Zhang, B., Su, X., Zhao, L., Pan, J., Wang, Z., Du, Z., Wei, Y. (2023). The chemical damage of sandstone after sulfuric acid-rock reactions with different duration times and its influence on the impact mechanical behaviour. Heliyon, 9(12). https://doi.org/10.1016/j.heliyon.2023.e22346NiuQ.HuM.HeJ.ZhangB.SuX.ZhaoL.PanJ.WangZ.DuZ.WeiY. (2023). The chemical damage of sandstone after sulfuric acid-rock reactions with different duration times and its influence on the impact mechanical behaviour. Heliyon, 9(12). https://doi.org/10.1016/j.heliyon.2023.e22346Search in Google Scholar
Osman, A. (2019). Detection of proteins as organic additive in flooring mortars used in excavated remains from Anba Shenoute Monastery, Sohag, Egypt. Shedet, 6(6), 203211. 10.21608/SHEDET.006.11OsmanA. (2019). Detection of proteins as organic additive in flooring mortars used in excavated remains from Anba Shenoute Monastery, Sohag, Egypt. Shedet, 6(6), 203211. 10.21608/SHEDET.006.11Open DOISearch in Google Scholar
Perez, A., Rossano, S., Trcera, N., Verney-Carron, A., Rommevaux, C., Fourdrin, C., Agnello, A.C., Huguenot, D., Guyot, F. (2019). Direct and indirect impact of the bacterial strain Pseudomonas aeruginosa on the dissolution of synthetic Fe(III)-and Fe(II)-bearing basaltic glasses. Chemical Geology, 523, 9-18. https://doi.org/10.1016/j.chemgeo.2019.05.033PerezA.RossanoS.TrceraN.Verney-CarronA.RommevauxC.FourdrinC.AgnelloA.C.HuguenotD.GuyotF. (2019). Direct and indirect impact of the bacterial strain Pseudomonas aeruginosa on the dissolution of synthetic Fe(III)-and Fe(II)-bearing basaltic glasses. Chemical Geology, 523, 9–18. https://doi.org/10.1016/j.chemgeo.2019.05.033Search in Google Scholar
Pettijohn, F.J., Potter, P.E., Siever, R. (1973). Sand and Sandstone, Sand and Sandstone. Springer US. https://doi.org/10.1007/978-1-4615-9974-6PettijohnF.J.PotterP.E.SieverR. (1973). Sand and Sandstone, Sand and Sandstone. Springer US. https://doi.org/10.1007/978-1-4615-9974-6Search in Google Scholar
Pinna, D. (2017). Coping with Biological Growth on Stone Heritage Objects: Methods, Products, Applications, and Perspectives, Coping with Biological Growth on Stone Heritage Objects: Methods, Products, Applications, and Perspectives. Apple academic press, 1-382. https://doi.org/10.1201/9781315365510PinnaD. (2017). Coping with Biological Growth on Stone Heritage Objects: Methods, Products, Applications, and Perspectives, Coping with Biological Growth on Stone Heritage Objects: Methods, Products, Applications, and Perspectives. Apple academic press, 1–382. https://doi.org/10.1201/9781315365510Search in Google Scholar
Pinna, D. (2022). Can we do without biocides to cope with biofilms and lichens on stone heritage?. International Biodeterioration & Biodegradation, 172, 105437. https://doi.org/10.1016/j.ibiod.2022.105437PinnaD. (2022). Can we do without biocides to cope with biofilms and lichens on stone heritage?. International Biodeterioration & Biodegradation, 172, 105437. https://doi.org/10.1016/j.ibiod.2022.105437Search in Google Scholar
Pinna, D. (2023). Microbial recolonization of artificial and natural stone artworks after cleaning and coating treatments. Journal of Cultural Heritage, 61, 217-228. https://doi.org/10.1016/j.culher.2023.04.006PinnaD. (2023). Microbial recolonization of artificial and natural stone artworks after cleaning and coating treatments. Journal of Cultural Heritage, 61, 217–228. https://doi.org/10.1016/j.culher.2023.04.006Search in Google Scholar
Pointing, S.B., Belnap, J. (2012). Microbial colonization and controls in dryland systems. Nature Reviews Microbiology, 10(8), 551-562. https://doi.org/10.1038/nrmicro2831PointingS.B.BelnapJ. (2012). Microbial colonization and controls in dryland systems. Nature Reviews Microbiology, 10(8), 551–562. https://doi.org/10.1038/nrmicro2831Search in Google Scholar
Pomeyrol R. (1968). Nubian Sandstone”. American Association of Petroleum Geology Bulletin, 52(4), 589-600, https://doi.org/10.1306/5d25c44b-16c1-11d7-8645000102c1865dPomeyrolR. (1968). Nubian Sandstone”. American Association of Petroleum Geology Bulletin, 52(4), 589–600, httpshttps://doi.org/10.1306/5d25c44b-16c1-11d7-8645000102c1865dSearch in Google Scholar
Potysz, A., Bartz, W. (2022). Bioweathering of minerals and dissolution assessment by experimental simulations— Implications for sandstone rocks: A review. Construction and Building Materials, 316, 125862. https://doi.org/10.1016/j.conbuildmat.2021.125862PotyszA.BartzW. (2022). Bioweathering of minerals and dissolution assessment by experimental simulations— Implications for sandstone rocks: A review. Construction and Building Materials, 316, 125862. https://doi.org/10.1016/j.conbuildmat.2021.125862Search in Google Scholar
Potysz, A., Bartz, W. (2023). Dissolution of red sandstones exposed to siderophore-producing bacterium Pseudomonas fluorescens: Experimental bioweathering coupled to a geochemical model. Construction and Building Materials, 369, 130584. https://doi.org/10.1016/j.conbuildmat.2023.130584PotyszA.BartzW. (2023). Dissolution of red sandstones exposed to siderophore-producing bacterium Pseudomonas fluorescens: Experimental bioweathering coupled to a geochemical model. Construction and Building Materials, 369, 130584. https://doi.org/10.1016/j.conbuildmat.2023.130584Search in Google Scholar
Powers, M.C. (1953). A New Roundness Scale for Sedimentary Particles. Journal of Sedimentary Research, 23, 117–119. https://doi.org/10.1306/d4269567-2b26-11d7-8648000102c1865dPowersM.C. (1953). A New Roundness Scale for Sedimentary Particles. Journal of Sedimentary Research, 23, 117–119. https://doi.org/10.1306/d4269567-2b26-11d7-8648000102c1865dSearch in Google Scholar
Rachid, D., Ahmed, B. (2005). Effect of iron and growth inhibitors on siderophores production by Pseudomonas fluorescens. African Journal of Biotechnology, 4(7), 697-702. https://doi.org/10.5897/ajb2005.000-3129RachidD.AhmedB. (2005). Effect of iron and growth inhibitors on siderophores production by Pseudomonas fluorescens. African Journal of Biotechnology, 4(7), 697–702. https://doi.org/10.5897/ajb2005.000-3129Search in Google Scholar
Reichard, P.U., Kretzschmar, R., Kraemer, S.M. (2007). Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochimica et Cosmochimica Acta, 71(23), 5635-5650. https://doi.org/10.1016/j.gca.2006.12.022ReichardP.U.KretzschmarR.KraemerS.M. (2007). Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochimica et Cosmochimica Acta, 71(23), 5635–5650. https://doi.org/10.1016/j.gca.2006.12.022Search in Google Scholar
Ribeiro, R.P., Paraguassú, A.B. (2008). Relationship between technological properties and slab surface roughness of siliceous dimension stones. International Journal of Rock Mechanics and Mining Sciences, 45(8), 1526-1531. https://doi.org/10.1016/j.ijrmms.2008.02.006RibeiroR.P.ParaguassúA.B. (2008). Relationship between technological properties and slab surface roughness of siliceous dimension stones. International Journal of Rock Mechanics and Mining Sciences, 45(8), 1526–1531. https://doi.org/10.1016/j.ijrmms.2008.02.006Search in Google Scholar
Redman, J. A., Walker, S. L., Elimelech, M. (2004). Bacterial adhesion and transport in porous media: Role of the secondary energy minimum. Environmental science & technology, 38(6), 1777-1785. https://doi.org/10.1021/es034887lRedmanJ. A.WalkerS. L.ElimelechM. (2004). Bacterial adhesion and transport in porous media: Role of the secondary energy minimum. Environmental science & technology, 38(6), 1777–1785. https://doi.org/10.1021/es034887lSearch in Google Scholar
Roduit, N. (2007). JMicroVision : un logiciel d’analyse d’images pétrographiques polyvalent. Uiniversité de Genève.RoduitN. (2007). JMicroVision : un logiciel d’analyse d’images pétrographiques polyvalent. Uiniversité de Genève.Search in Google Scholar
Saha, R., Saha, N., Donofrio, R.S., Bestervelt, L.L. (2013). Microbial siderophores: A mini review. Journal of Basic Microbiology, 53(4), 303-317. https://doi.org/10.1002/jobm.201100552SahaR.SahaN.DonofrioR.S.BesterveltL.L. (2013). Microbial siderophores: A mini review. Journal of Basic Microbiology, 53(4), 303–317. https://doi.org/10.1002/jobm.201100552Search in Google Scholar
Sakr, A., Ghaly, M., Reda, F., Ezzat, S. M., Hameid, E. A. (2018). Characterization of microbiota deteriorating specific coptic manuscripts, Coptic Museum, Egypt. International Journal of Research Studies in Biosciences, 6(9), 1-15. http://dx.doi.org/10.20431/2349-0365.0608005SakrA.GhalyM.RedaF.EzzatS. M.HameidE. A. (2018). Characterization of microbiota deteriorating specific coptic manuscripts, Coptic Museum, Egypt. International Journal of Research Studies in Biosciences, 6(9), 1–15. http://dx.doi.org/10.20431/2349-0365.0608005Search in Google Scholar
Scheerer, S., Ortega-Morales, O., Gaylarde, C. (2009). Microbial deterioration of stone monuments-an updated overview. Advances in applied microbiology, 66, 97139. https://doi.org/10.1016/S0065-2164(08)00805-8ScheererS.Ortega-MoralesO.GaylardeC. (2009). Microbial deterioration of stone monuments-an updated overview. Advances in applied microbiology, 66, 97139. https://doi.org/10.1016/S0065-2164(08)00805-8Search in Google Scholar
Scrivano, S., Gaggero, L., Gisbert Aguilar, J. (2018). Microporosity and minero-petrographic features influences on decay: Experimental data from four dimension stones. Construction and Building Materials, 173, 342-349. https://doi.org/10.1016/j.conbuildmat.2018.04.041ScrivanoS.GaggeroL.Gisbert AguilarJ. (2018). Microporosity and minero-petrographic features influences on decay: Experimental data from four dimension stones. Construction and Building Materials, 173, 342–349. https://doi.org/10.1016/j.conbuildmat.2018.04.041Search in Google Scholar
Sheldon, H. A., Wheeler, J., Worden, R. H., Cheadle, M. J. (2003). An analysis of the roles of stress, temperature, and pH in chemical compaction of sandstones. Journal of Sedimentary Research, 73(1), 64-71. https://doi.org/10.1306/070802730064SheldonH. A.WheelerJ.WordenR. H.CheadleM. J. (2003). An analysis of the roles of stress, temperature, and pH in chemical compaction of sandstones. Journal of Sedimentary Research, 73(1), 64–71. https://doi.org/10.1306/070802730064Search in Google Scholar
Siegesmund, S., Weiss, T., Vollbrecht, A. (2002). Natural stone, weathering phenomena, conservation strategies and case studies: Introduction. Geological Society, London, Special Publications, 205(1), 1-7. https://doi.org/10.1144/GSL.SP.2002.205.01.01SiegesmundS.WeissT.VollbrechtA. (2002). Natural stone, weathering phenomena, conservation strategies and case studies: Introduction. Geological Society, London, Special Publications, 205(1), 1–7. https://doi.org/10.1144/GSL.SP.2002.205.01.01Search in Google Scholar
Sitzia, F., Lisci, C., Mirão, J. (2021). Building pathology and environment: Weathering and decay of stone construction materials subjected to a Csa mediterranean climate laboratory simulation. Construction and Building Materials, 300, 124311. https://doi.org/10.1016/j.conbuildmat.2021.124311SitziaF.LisciC.MirãoJ. (2021). Building pathology and environment: Weathering and decay of stone construction materials subjected to a Csa mediterranean climate laboratory simulation. Construction and Building Materials, 300, 124311. https://doi.org/10.1016/j.conbuildmat.2021.124311Search in Google Scholar
Skipper, P.J.A. Schulze, H., Williams, D. R., Dixon, R.A. (2016). Biodeterioration of limestone-built heritage: a multidisciplinary challenge. Science And Art: A Future For Stone, 139.SkipperP.J.A.SchulzeH.WilliamsD. R.DixonR.A. (2016). Biodeterioration of limestone-built heritage: a multidisciplinary challenge. Science And Art: A Future For Stone, 139.Search in Google Scholar
Sterflinger, K., Piñar, G. (2013). Microbial deterioration of cultural heritage and works of art-Tilting at windmills? Applied Microbiology and Biotechnology, 97, 96379646. https://doi.org/10.1007/s00253-013-5283-1SterflingerK.PiñarG. (2013). Microbial deterioration of cultural heritage and works of art-Tilting at windmills?Applied Microbiology and Biotechnology, 97, 96379646. https://doi.org/10.1007/s00253-013-5283-1Search in Google Scholar
Sun, Q., Zhang, Y. (2019). Combined effects of salt, cyclic wetting and drying cycles on the physical and mechanical properties of sandstone. Engineering geology, 248, 70-79. https://doi.org/10.1016/j.enggeo.2018.11.009SunQ.ZhangY. (2019). Combined effects of salt, cyclic wetting and drying cycles on the physical and mechanical properties of sandstone. Engineering geology, 248, 70–79. https://doi.org/10.1016/j.enggeo.2018.11.009Search in Google Scholar
Tayler, S., May, E. (1991). The seasonality of heterotrophic bacteria on sandstones of ancient monuments. International Biodeterioration, 28(1-4), 49-64. https://doi.org/10.1016/0265-3036(91)90033-NTaylerS.MayE. (1991). The seasonality of heterotrophic bacteria on sandstones of ancient monuments. International Biodeterioration, 28(1-4), 49–64. https://doi.org/10.1016/0265-3036(91)90033-NSearch in Google Scholar
Temraz M. G, Khallaf M. K. (2016). Weathering behavior investigations and treatment of Kom Ombo temple sandstone, Egypt – Based on their sedimentological and petrogaphical information. Journal of African Earth Sciences, 113, 194-204. https://doi.org/10.1016/j.jafrearsci.2015.10.021TemrazM. G.KhallafM. K. (2016). Weathering behavior investigations and treatment of Kom Ombo temple sandstone, Egypt – Based on their sedimentological and petrogaphical information. Journal of African Earth Sciences, 113, 194–204. https://doi.org/10.1016/j.jafrearsci.2015.10.021Search in Google Scholar
Tiano, P. (2001). Biodegradation of Cultural Heritage: Decay Mechanisms and Control Methods In Seminar article, New University of Lisbon, Department of Conservation and Restoration (pp. 7-12).TianoP. (2001). Biodegradation of Cultural Heritage: Decay Mechanisms and Control Methods In Seminar article, New University of Lisbon, Department of Conservation and Restoration (pp. 7–12).Search in Google Scholar
Tourney, J., Ngwenya, B.T. (2014). The role of bacterial extracellular polymeric substances in geomicrobiology. Chemical Geology, 386, 115-132. https://doi.org/10.1016/j.chemgeo.2014.08.011TourneyJ.NgwenyaB.T. (2014). The role of bacterial extracellular polymeric substances in geomicrobiology. Chemical Geology, 386, 115–132. https://doi.org/10.1016/j.chemgeo.2014.08.011Search in Google Scholar
Trudgill, S.T., Viles, H.A. (1998). Field and laboratory approaches to limestone weathering. Quarterly Journal of Engineering Geology and Hydrogeology, 31(4), 333-341. https://doi.org/10.1144/GSL.QJEG.1998.031.P4.06TrudgillS.T.VilesH.A. (1998). Field and laboratory approaches to limestone weathering. Quarterly Journal of Engineering Geology and Hydrogeology, 31(4), 333–341. https://doi.org/10.1144/GSL.QJEG.1998.031.P4.06Search in Google Scholar
Tseng, C.F., Burger, A., Mislin, G.L.A., Schalk, I.J., Yu, S.S.F., Chan, S.I., Abdallah, M.A. (2006). Bacterial siderophores: The solution stoichiometry and coordination of the Fe(III) complexes of pyochelin and related compounds. JBIC Journal of Biological Inorganic Chemistry, 11, 419-432. https://doi.org/10.1007/s00775-006-0088-7TsengC.F.BurgerA.MislinG.L.A.SchalkI.J.YuS.S.F.ChanS.I.AbdallahM.A. (2006). Bacterial siderophores: The solution stoichiometry and coordination of the Fe(III) complexes of pyochelin and related compounds. JBIC Journal of Biological Inorganic Chemistry, 11, 419–432. https://doi.org/10.1007/s00775-006-0088-7Search in Google Scholar
Tuson, H. H., Weibel, D. B. (2013). Bacteria–surface interactions. Soft matter, 9(17), 4368-4380. https://doi.org/10.1039/C3SM27705DTusonH. H.WeibelD. B. (2013). Bacteria–surface interactions. Soft matter, 9(17), 4368–4380. https://doi.org/10.1039/C3SM27705DSearch in Google Scholar
Uroz, S., Oger, P., Lepleux, C., Collignon, C., Frey-Klett, P., Turpault, M.P. (2011). Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystems. Research in Microbiology, 162(9), 820-831. https://doi.org/10.1016/j.resmic.2011.01.013UrozS.OgerP.LepleuxC.CollignonC.Frey-KlettP.TurpaultM.P. (2011). Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystems. Research in Microbiology, 162(9), 820–831. https://doi.org/10.1016/j.resmic.2011.01.013Search in Google Scholar
Vieira, M.J., Melo, L.F. (1995). Effect of clay particles on the behaviour of biofilms formed by Pseudomonas Fluorescens. Water Science and Technology, 32(8), 45-52. https://doi.org/10.1016/0273-1223(96)00006-6VieiraM.J.MeloL.F. (1995). Effect of clay particles on the behaviour of biofilms formed by Pseudomonas Fluorescens. Water Science and Technology, 32(8), 45–52. https://doi.org/10.1016/0273-1223(96)00006-6Search in Google Scholar
Viles, H. (1995). Ecological perspectives on rock surface weathering: Towards a conceptual model. Geomorphology, 13(1-4), 21-35. https://doi.org/10.1016/0169-555X(95)00024-YVilesH. (1995). Ecological perspectives on rock surface weathering: Towards a conceptual model. Geomorphology, 13(1-4), 21–35. https://doi.org/10.1016/0169-555X(95)00024-YSearch in Google Scholar
Wang, C., Pei, W., Zhang, M., Lai, Y., Dai, J. (2021). Multiscale experimental investigations on the deterioration mechanism of sandstone under wetting–drying cycles. Rock Mechanics and Rock Engineering, 54, 429-441. https://doi.org/10.1007/s00603-020-02257-2WangC.PeiW.ZhangM.LaiY.DaiJ. (2021). Multiscale experimental investigations on the deterioration mechanism of sandstone under wetting–drying cycles. Rock Mechanics and Rock Engineering, 54, 429–441. https://doi.org/10.1007/s00603-020-02257-2Search in Google Scholar
Warke, P.A., McKinley, J., Smith, B.J. (2006). Variabale weathering response in sandstone: Factors controlling decay sequences. Earth Surface Processes and Landforms, 31(6), 715-735. https://doi.org/10.1002/esp.1284WarkeP.A.McKinleyJ.SmithB.J. (2006). Variabale weathering response in sandstone: Factors controlling decay sequences. Earth Surface Processes and Landforms, 31(6), 715–735. https://doi.org/10.1002/esp.1284Search in Google Scholar
Warr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine 85(3), 291-320. https://doi. org/10.1180/mgm.2021.43WarrL.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine85(3), 291–320. https://doi. org/10.1180/mgm.2021.43Search in Google Scholar
Warscheid, T. (2000). Integrated Concepts for the Protection of Cultural Artifacts Against Biodeterioration, in: Of Microbes and Art: The role of microbial communities in the degradation and protection of cultural heritage, 185-201. https://doi.org/10.1007/978-1-4615-4239-1_13WarscheidT. (2000). Integrated Concepts for the Protection of Cultural Artifacts Against Biodeterioration, in: Of Microbes and Art: The role of microbial communities in the degradation and protection of cultural heritage, 185–201. https://doi.org/10.1007/978-1-4615-4239-1_13Search in Google Scholar
Wells, T., Hancock, G., Fryer, J. (2008). Weathering rates of sandstone in a semi-arid environment (Hunter Valley, Australia). Environmental Geology, 54, 1047-1057. 10.1007/s00254-007-0871-yWellsT.HancockG.FryerJ. (2008). Weathering rates of sandstone in a semi-arid environment (Hunter Valley, Australia). Environmental Geology, 54, 1047–1057. 10.1007/s00254-007-0871-yOpen DOISearch in Google Scholar
White, A. F., Brantley, S. L. (2003). The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field?. Chemical Geology, 202(3-4), 479-506. https://doi.org/10.1016/j.chemgeo.2003.03.001WhiteA. F.BrantleyS. L. (2003). The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field?. Chemical Geology, 202(3-4), 479–506. https://doi.org/10.1016/j.chemgeo.2003.03.001Search in Google Scholar
Widder, S., Allen, R.J., Pfeiffer, T., Curtis, T.P., Wiuf, C., Sloan, W.T., Cordero, O.X., Brown, S.P., Momeni, B., Shou, W., Kettle, H., Flint, H.J., Haas, A.F., Laroche, B., Kreft, J.U., Rainey, P.B., Freilich, S., Schuster, S., Milferstedt, K., Van Der Meer, J.R., Grobkopf, T., Huisman, J., Free, A., Picioreanu, C., Quince, C., Klapper, I., Labarthe, S., Smets, B.F., Wang, H., Soyer, O.S., Allison, S.D., Chong, J., Lagomarsino, M.C., Croze, O.A., Hamelin, J., Harmand, J., Hoyle, R., Hwa, T.T., Jin, Q., Johnson, D.R., de Lorenzo, V., Mobilia, M., Murphy, B., Peaudecerf, F., Prosser, J.I., Quinn, R.A., Ralser, M., Smith, A.G., Steyer, J.P., Swainston, N., Tarnita, C.E., Trably, E., Warren, P.B., Wilmes, P. (2016). Challenges in microbial ecology: Building predictive understanding of community function and dynamics. The ISME Journal, 10(11), 2557-2568. https://doi.org/10.1038/ismej.2016.45WidderS.AllenR.J.PfeifferT.CurtisT.P.WiufC.SloanW.T.CorderoO.X.BrownS.P.MomeniB.ShouW.KettleH.FlintH.J.HaasA.F.LarocheB.KreftJ.U.RaineyP.B.FreilichS.SchusterS.MilferstedtK.Van Der MeerJ.R.GrobkopfT.HuismanJ.FreeA.PicioreanuC.QuinceC.KlapperI.LabartheS.SmetsB.F.WangH.SoyerO.S.AllisonS.D.ChongJ.LagomarsinoM.C.CrozeO.A.HamelinJ.HarmandJ.HoyleR.HwaT.T.JinQ.JohnsonD.R.de LorenzoV.MobiliaM.MurphyB.PeaudecerfF.ProsserJ.I.QuinnR.A.RalserM.SmithA.G.SteyerJ.P.SwainstonN.TarnitaC.E.TrablyE.WarrenP.B.WilmesP. (2016). Challenges in microbial ecology: Building predictive understanding of community function and dynamics. The ISME Journal, 10(11), 2557–2568. https://doi.org/10.1038/ismej.2016.45Search in Google Scholar
Yan, S., Xie, N., Liu, J., Li, L., Peng, L., Jiang, S. (2022). Salt weathering of sandstone under dehydration and moisture absorption cycles: An experimental study on the sandstone from Dazu rock carvings. Earth Surface Processes and Landforms, 47(4), 977-993. 10.1002/esp.5298YanS.XieN.LiuJ.LiL.PengL.JiangS. (2022). Salt weathering of sandstone under dehydration and moisture absorption cycles: An experimental study on the sandstone from Dazu rock carvings. Earth Surface Processes and Landforms, 47(4), 977–993. 10.1002/esp.5298Open DOISearch in Google Scholar