Otwarty dostęp

MinPlot: A mineral formula recalculation and plotting program for electron probe microanalysis


Zacytuj

Afifi, A.M., & Essene, E. (1988). MINFILE: A microcomputer program for storage and manipulation of chemical data on minerals. American Mineralogist, 73, 446-448. Search in Google Scholar

Bernhardt, H.J. (2010). MINCALC-V5, a non EXCEL based computer program for general electron-microprobe mineral analyses data processing. IMA 20th General Meeting 2010, Acta Mineralogy and Petrology Abstract Series, 6, 869. Search in Google Scholar

Brandelik, A. (2009). CALCMIN – an EXCELTM Visual Basic application for calculating mineral structural formulae from electron microprobe analyses. Computers & Geosciences, 35, 1540-1551. DOI: 10.1016/j.cageo.2008.09.011.10.1016/j.cageo.2008.09.011 Search in Google Scholar

De Angelis, S.M.H., & Niell, O.K. (2012). MINERAL: A program foor the propagation of analytical uncertainty through mineral formula recalculations. Computers & Geosciences, 48, 134-142. DOI: 10.1016/j.cageo.2012.05.023. Open DOISearch in Google Scholar

Deditius, A.P., Reich, M., Kesler, S.E., Utsunomiya, S., Chryssoulis, S.L., Walshe, J., & Ewing, R.C. (2014). The coupled geochemistry of Au and As in pyrite from hydro-thermal ore deposits. Geochimica et Cosmochimica Acta, 140, 644-670. DOI: 10.1016/j.gca.2014.05.045. Open DOISearch in Google Scholar

Deditius, A.P., Utsunomiya, S., Renock, D., Ewing, R.C., Ramana, C.V., Becker, U., & Kesler, S.E. (2008). A proposed new type of arsenian pyrite: Composition, nano-structure and geological significance. Geochimica et Cosmochimica Acta, 72, 2919-2933. DOI: 10.1016/j. gca.2008.03.014. Open DOISearch in Google Scholar

De Bjerg, S.C., Mogessie, A., & Bjerg, E. (1992). HYPER-FORM – A Hypercard® program for Macintosh® microcomputers to calculate mineral formulae from electron microprobe and wet chemical analysis. Computers & Geosciences, 30, 909-923. DOI: 10.1016/0098-3004(92)90006-D. Open DOISearch in Google Scholar

De Bjerg, S.C., Mogessie, A., & Bjerg, E. (1995). PASFORM – A program for IBM® PC or PC-compatible computers to calculate mineral formulae from electron microprobe and wet-chemical analysis. Computers & Geosciences, 21, 1187-1190. DOI: 10.1016/0098-3004(95)00049-6. Open DOISearch in Google Scholar

Deer, W.A., Howie, R.A., & Zussman, J. (2013). An introduction to the rock-forming minerals (3 ed.). London: Mineralogical Society of Great Britain and Ireland. DOI: 10.1180/DHZ. Open DOISearch in Google Scholar

De Obeso, J.C., & Kelemen, P.B. (2020). Major element mobility during serpentinization, oxidation and weathering of mantle peridotite at low temperatures. Philosophical Transactions of the Royal Society A, 378, 20180433. DOI: 10.1098/rsta.2018.0433.31902343 Open DOISearch in Google Scholar

Droop, G.T.R. (1987). A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analysis, using stoichiometric criteria. Mineral Magazine, 51, 431-437.10.1180/minmag.1987.051.361.10 Search in Google Scholar

Esawi, E.K. (2004). AMPH-CLASS: An Excel spreadsheet for the classification and nomenclature of amphiboles based on the 1997 recommendations of the International Mineralogical Association. Computers and Geosciences, 30, 753-760. DOI: 10.1016/j.cageo.2004.05.007. Open DOISearch in Google Scholar

Forshaw, J.B., & Pattison, D.R.M. (2021). Ferrous/ferric (Fe2+/Fe3+) partitioning among silicates in metapelites. Contributions to Mineralogy and Petrology, 176, 1-26. DOI: 10.1007/s00410-021-01814-4. Open DOISearch in Google Scholar

Grew, E.S., Locock, A.J., Mills, S.J., Galuskina, I.O., Galuskin, E.V., & Hålenius, U. (2013). Nomenclature of the garnet supergroup. American Mineralogist, 98, 785-811. DOI: 10.2138/am.2013.4201. Open DOISearch in Google Scholar

Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., & Welch, M.D. (2012). Nomenclature of the amphibole supergroup. American Mineralogist, 97, 2031-2048. DOI: 10.2138/am.2012.4276. Open DOISearch in Google Scholar

Hawthorne, F.C., Ungaretti, L., Oberti, R., Caucia, F., & Callegari, A. (1993). The crystal chemistry of staurolite. I. Crystal structure and site populations. The Canadian Mineralogist, 31, 551-582. Search in Google Scholar

Harlow, G.E. (1999). Interpretation of Kcpx and CaEs components in clinopyroxene from diamond inclusions and mantle samples. Proceedings of the 7th International Kimberlite Conference, 1, 321-331. Search in Google Scholar

Holdaway, M.J., Mukhopadhyay, B., Dyar, M.D., Dutrow, B.L., Rumble, D., & Grambling, J.A. (1991). A new perspective on staurolite crystals chemistry: Use of stoichio-metric and chemical end-members for a mole fraction model. American Mineralogist, 76, 1910-1991. Search in Google Scholar

Knowles, C.R. (1987). A BASIC program to recast garnet end-members. Computers & Geosciences, 13, 655-659. Kohn, M.J. (2017). Titanite petrochronology. Reviews in Mineralogy and Geochemistry, 83, 419-441. DOI: 10.2138/rmg.2017.83.13. Open DOISearch in Google Scholar

Lanari, P., Vidal, O., de Andrade, V., Dubacq, B., Lewin, E., Grosch, E.G., & Schwartz, S. (2014a). XMapTools: A MATLAB®-based program for electron microprobe X-ray image processing and geothermobarometry. Computers & Geosciences, 62, 227-240. DOI: 10.1016/j. cageo.2013.08.010. Open DOISearch in Google Scholar

Lanari, P., Wagner, T., & Vidal, O. (2014b). A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO-FeO-Al2O3-SiO2-H2O: Applications to P–T sections and geothermometry. Contributions to Mineralogy and Petrology, 167(968), 1-19. DOI: 10.1007/s00410-014-0968-8. Open DOISearch in Google Scholar

Lanari, P., Vho, A., Bovay, T., Airaghi, L., & Centrella, S. (2019). Quantitative compositional mapping of mineral phases by electron probe micro-analyser. Geological Society of London, Special Publications, 478, 39-63. DOI: 10.1144/SP478.4. Open DOISearch in Google Scholar

Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kish, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., & Youzhi, G. (1997). Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35, 219-246.10.1127/ejm/9/3/0623 Search in Google Scholar

Li, X., Zhang, C., Behrens, H., & Holtz, F. (2020). Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression. Lithos, 356-357: 105371. DOI: 10.1016/j.lithos.2020.105371. Open DOISearch in Google Scholar

Le Pioufle, A., & Canil, D. (2012). Iron in monticellite as an oxygen barometer for kimberlite magmas. Contributions to Mineralogy and Petrology, 163, 1033-1046. DOI: 10.1007/s00410-011-0714-4. Open DOISearch in Google Scholar

Locock, A.J. (2008). An Excel spreadsheet to recase analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Computers & Geosciences, 34(12), 1769-1780. DOI: 10.1016/j.cageo.2007.12.013. Open DOISearch in Google Scholar

Locock, A.J. (2014). An Excel spreadsheet to classify chemical analyses of amphibole following the IMA 2012 recommendations. Computers & Geosciences, 62, 1-11. DOI: 10.1016/j.cageo.2013.09.011. Open DOISearch in Google Scholar

Masci, L., Dubacq, B., Verlaguet, A., Chopin, C., de Andrade, V., & Herviou, C. (2019). A XANES and EPMA study of Fe3+ in chlorite: Importance of oxychlorite and implications for cation site distribution and thermobarometry. American Mineralogist, 104, 403-417. DOI: 10.2138/am-2019-6766. Open DOISearch in Google Scholar

Meija, J., Coplen, T.B., Berglund, M., Brand, W.A., De Bièvre, P., Gröning, M., Holden, N.E., Irrgeher, J., Loss, R.D., Walczyk, T., & Prohaska, T. (2016). Atomic weights of the elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry, 88, 265-291. DOI: 10.1515/pac-2015-0305. Open DOISearch in Google Scholar

Mogessie, A., Tessadri, R., & Veltman, C.B. (1990). EMP-AMPH – a Hypercard program to determine the name of an amphibole from electron microprobe analysis according to the International Mineralogical Association scheme. Computers and Geosciences, 16, 309-330. DOI: 10.1016/0098-3004(90)90066-3. Open DOISearch in Google Scholar

Mogessie, A. (2001). AMPH-IMA97: a Hypercard program to determine the name of an amphibole from electron microprobe and wet chemical analyses. Computers and Geosciences, 27, 1171-1180. DOI: 10.1016/S0098-3004(01)00034-6. Open DOISearch in Google Scholar

Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J., Aoki, K., & Gottardi, G. (1989). Nomenclature of pyroxenes. Miner-alogical Magazine, 52, 535-550. DOI: 10.1180/minmag.1988.052.367.15. Open DOISearch in Google Scholar

Oberti, R., Ungretti, L., Cannnillo, E., & Hawthorne, F.C. (1992). The behaviour of Ti in amphiboles. I. Four- and six-coordinate Ti in richterite. European Journal of Mineral-ogy, 4, 425-439.10.1127/ejm/4/3/0425 Search in Google Scholar

Piccardo, G.B., & Guarnieri, L. (2011). Gabbro-norite cumulates from strongly depleted MORB melts in the Alpine-Apennine ophiolites. Lithos, 124, 200-214. DOI: 10.1016/j.lithos.2011.01.017. Open DOISearch in Google Scholar

Qian, G., Brugger, J., Testemale, D., Skinner, W., & Pring, A. (2013). Formation of As(II)-pyrite during experimental replacement of magnetite under hydrothermal conditions. Geochimica et Cosmochimica Acta, 100, 1-10. DOI: 10.1016/j.gca.2012.09.034. Open DOISearch in Google Scholar

Rao, D.R., & Rao, T.V.S. (1996). AMPH: A program for calculating formulae for assigning names to the amphibole group of minerals. Computers & Geosciences, 22, 931-933. DOI: 10.1016/S0098-3004(96)00018-0. Open DOISearch in Google Scholar

Richard, L.R., & Clarke, D.B. (1990). AMPHIOBOL: A program for calculating structural formulae and for classifying and plotting chemical analyses of amphiboles. American Mineralogist, 75, 421-423. Search in Google Scholar

Rock, N.M.S., & Carroll, G.W. (1990). MINTAB: A general-purpose mineral recalculation and tabulation program for Macintosh. American Mineralogist, 75, 424-430. Search in Google Scholar

Rock, N.M.S. (1987). A FORTRAN program for tabulating and naming amphibole analyses according to the International Mineralogical Association scheme. Mineralogy and Petrology, 37, 79-88. DOI: 10.1007/BF01163159. Open DOISearch in Google Scholar

Rock, N.M.S., & Leake, R.E. (1984). The International Miner-alogical Association amphibole nomenclature scheme: Computerization and its consequences. Mineralogical Magazine, 48, 211-227.10.1180/minmag.1984.048.347.05 Search in Google Scholar

Schumacher, J.C. (1991). Empirical ferric iron corrections: Necessity, assumptions, and effects on selected geothermobarometers. Mineralogical Magazine, 55, 3-18. DOI: 10.1180/minmag.1991.055.378.02. Open DOISearch in Google Scholar

Spear, F.S., & Kimball, K.L. (1984). RECAMP – A FORTRAN IV program for estimating Fe3+ contents in amphiboles. Computers in Geology, 10, 317-325. DOI: 10.1016/0098-3004(84)90029-3. Open DOISearch in Google Scholar

Spreitzer, S.K., Walters, J.B., Cruz-Uribe, A.M., Williams, M.L., Yates, M.G., Jercinovic, M.J., Grew, E.S., & Carson, C.J. (2021). Monazite petrochronology of polymetamorphic granulite-facies rocks of the Larsemann Hills, Prydz Bay, East Antarctica. Journal of Metamorphic Geology, 39, 1205-1228. DOI: 10.1111/jmg.12607. Open DOISearch in Google Scholar

Sturm, R. (2002). PX-NOM – An interactive spreadsheet program for the computation of pyroxene analyses derived from the electron microprobe. Computers & Geosciences, 28, 473-483. DOI: 10.1016/S0098-3004(01)00083-8. Open DOISearch in Google Scholar

Tiepolo, M., Zanetti, A., & Oberti, R. (1999). Detection, crystal-chemical mechanisms and petrological implications of [6]Ti4+ partitioning in pargasite and kaersutite. European Journal of Mineralogy, 11, 345-354. DOI: 10.1127/ejm/11/2/0345. Open DOISearch in Google Scholar

Tindle, A.G., & Webb, P.C. (1994). Probe-AMPH – A spreadsheet program to classify microprobe-derived amphibole analyses. Computers & Geosciences, 20, 1201-1228. DOI: 10.1016/0098-3004(94)90071-X. Open DOISearch in Google Scholar

Xu, J., Zhang, G.B., Marschall, H.R., Walters, J.B., Liu, S.Q., Lü, Z., Zhang, L.F., Hu, H., & Li, N. (2022). Boron isotopes of white mica and tourmaline in an ultra-high pressure metapelite from the western Tianshan, China: Dehydration and metasomatism during exhumation of subducted ocean-floor sediments. Contributions to Mineralogy and Petrology, 177(46), 1-16. DOI: 10.1007/s00410-022-01916-7. Open DOISearch in Google Scholar

Yavuz, F. (2003a). Evaluating micas in petrologic and metallogenic aspect: I – definitions and structure of the computer program MICA+. Computers & Geosciences, 29, 1203-1213. DOI: 10.1016/S0098-3004(03)00142-0. Open DOISearch in Google Scholar

Yavuz, F. (2003b). Evaluating micas in petrologic and metal-logenic aspect: II – applications using the computer program MICA+. Computers & Geosciences, 29, 1215-1228. DOI: 10.1016/S0098-3004(03)00143-2. Open DOISearch in Google Scholar

Yavuz, F. (2007). WinAmphcal: A windows program for the IMA-04 amphibole classification. Geochemistry, Geophysics, Geosystems, 8, Q01004. DOI: 10.1029/2006GC001391. Open DOISearch in Google Scholar

Yavuz, F. (2013). WinPyrox: A Windows program for pyroxene calculation classification and thermobarometry. American Mineralogist, 98, 1338-1359. DOI: 10.2138/am.2013.4292. Open DOISearch in Google Scholar

Yavuz, F., Kumral, M., Karakaya, N., Karakaya, M.C., & Yildirim, D.K. (2015). A windows program for chlorite calculation and classification. Computers & Geosciences, 81, 101-113. DOI: 10.1016/j.cageo.2015.04.011. Open DOISearch in Google Scholar

Yavuz, F., & Yildirim, D.K. (2020). WinGrt, a Windows program for garnet supergroup minerals. Journal of Geosciences, 65, 71-95. DOI: 10.3190/jgeosci.303. Open DOISearch in Google Scholar

Walters, J.B., Cruz-Uribe, A.M., & Marschall, H.R. (2019). Isotopic compositions of sulfides in exhumed high-pressure terranes: Implications for sulfur cycling in subduction zones. Geochemistry, Geophysics, Geosystems, 20, 2019GC008374. DOI: 10.1029/2019GC008374. Open DOISearch in Google Scholar

Walters, J.B., Cruz-Uribe, A.M., Marschall, H.R., & Boucher, B. (2021). The role of sulfides in the chalcophile and siderophile element budget of the subducted oceanic crust. Geochimica et Cosmochimica Acta, 304, 191-215. DOI: 10.1016/j.gca.2021.04.016. Open DOISearch in Google Scholar

Walters, J.B., Cruz-Uribe, A.M., Song, W.J., Gerbi, C., & Biela, K. (2022). Strengths and limitations of in situ U-Pb titanite petrochronology in polymetamorphic rocks: An example from western Maine, USA. Journal of Metamorphic Geology, 40, 1043-1066. DOI: 10.1111/jmg.12657. Open DOISearch in Google Scholar

Walters, J.B., & Kohn, M.J. (2017). Protracted thrusting followed by late rapid cooling of the Greater Himalayan Sequence, Annapurna Himalaya, Central Nepal: Insights from titanite petrochronology. Journal of Metamorphic Geology, 35, 897-917. DOI: 10.1111/jmg.12260. Open DOISearch in Google Scholar

Warr, L.N. (2021). IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291-320. DOI: 10.1180/mgm.2021.43. Open DOISearch in Google Scholar

eISSN:
1899-8526
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Nauki o Ziemi, Geofizyka, inne