Otwarty dostęp

Towards greener cities: Evaluating urban green space accessibility using the 3-30-300 rule exampled on the city of Olomouc (Czech Republic)

, ,  oraz   
30 cze 2025

Zacytuj
Pobierz okładkę

ArcČR500: digitální geografická databáze České republiky 1:500,000 (2003). ARCDATA Search in Google Scholar

Astell-Burt, T., & Feng, X. (2020). Does sleep grow on trees? A longitudinal study to investigate potential prevention of insufficient sleep with different types of urban green space. SSM – population health, 10, 100497. https://doi.org/10.1016/j.ssmph.2019.100497 Search in Google Scholar

Astell-Burt, T., & Feng, X. (2019). Urban green space, tree canopy and prevention of cardiometabolic diseases: a multilevel longitudinal study of 46,786 Australians. International Journal of Epidemiology, 49(3), 926–933. https://doi.org/10.1093/ije/dyz239 Search in Google Scholar

Astell-Burt, T., Hartig, T., Eckermann, S., Nieuwenhuijsen, M., McMunn, A., Frumkin, H., & Feng, X. (2022). More green, less lonely? A longitudinal cohort study. International Journal of Epidemiology, 51(1), 99–110. https://doi.org/10.1093/ije/dyab089 Search in Google Scholar

Azeez, O. S., Pradhan, B., & Jena, R. (2021). Urban tree classification using discrete-return LiDAR and an object-level local binary pattern algorithm. Geocarto International, 36(16), 1785–1803. https://doi.org/10.1080/10106049.2019.1678675 Search in Google Scholar

Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006 Search in Google Scholar

Browning, M. H. E. M., Locke, D. H., Konijnendijk, C., Labib, S. M., Rigolon, A., Yeager, R., ..., & Nieuwenhuijsen, M. (2024). Measuring the 3-30-300 rule to help cities meet nature access thresholds. Science of The Total Environment, 907, 167739. https://doi.org/10.1016/j.scitotenv.2023.167739 Search in Google Scholar

Chaskin, R. J. (1997). Perspectives on neighborhood and community: A review of the literature. Social Service Review, 71(4), 521–547. https://doi.org/10.1086/604277 Search in Google Scholar

Chen, C., Bi, L., & Kuan-fan, Z. (2021). Study on spatial-temporal change of urban green space in Yangtze River economic belt and its driving mechanism. International Journal of Environmental Research and Public Health, 18(23). https://doi.org/10.3390/ijerph182312498 Search in Google Scholar

Croeser, T., Sharma, R., Weisser, W. W., & Bekessy, S. A. (2024). The ‘3-30-300 rule’ for urban nature exposes acute canopy deficits in 8 global cities. Preprint. https://doi.org/10.21203/rs.3.rs-3960404/v1 Search in Google Scholar

ČSÚ (2024). Počet obyvatel v obcích k 1. 1. 2024. https://csu.gov.cz/produkty/pocet-obyvatel-v-obcich-9vln2prayv Search in Google Scholar

ČÚZK (2024a). Ortofoto České republiky https://geoportal.cuzk.cz/(S(q4ztbuykkhe1sh3ifu4kpkzj))/default.aspx?mode=TextMeta&text=ortofoto_info&side=ortofoto Search in Google Scholar

ČÚZK (2024b). RÚIAN (4.1 ed.). https://geoportal.cuzk.cz/(S(hecfd3cbpkctkan42kldt3t5))/Default.aspx?mode=TextMeta&text=dSady_RUIAN&side=dSady_RUIAN&head_tab=sekce-02-gp&menu=31 Search in Google Scholar

Daniel, J., & Jirmus, R. (2023). Becoming a park: The assemblage of Olomouc parks in the 19th and first half of the 20th century. Geografie 128(4), 459–481. https://doi.org/10.37040/geografie.2023.018 Search in Google Scholar

Geletič, J., & Lehnert, M. (2016). GIS-based delineation of local climate zones: The case of medium-sized Central European cities. Moravian Geographical Reports, 24(3), 2–12. https://doi.org/10.1515/mgr-2016-0012 Search in Google Scholar

Geletič, J., Lehnert, M., Resler, J., Krč, P., Bureš, M., Urban, A., & Krayenhoff, E. S. (2023). Heat exposure variations and mitigation in a densely populated neighborhood during a hot day: Towards a people-oriented approach to urban climate management. Building and Environment, 242, 110564. https://doi.org/10.1016/j.buildenv.2023.110564 Search in Google Scholar

Gillerot, L., Rozario, K., De Frenne, P., Oh, R., Ponette, Q., Bonn, A., ..., & Verheyen, K. (2024). Forests are chill: The interplay between thermal comfort and mental wellbeing. Landscape and Urban Planning, 242, 104933. https://doi.org/10.1016/j.landurbplan.2023.104933 Search in Google Scholar

Grabowski, Z. J., McPhearson, T., Matsler, A. M., Groffman, P., & Pickett, S. T. (2022). What is green infrastructure? A study of definitions in US city planning. Frontiers in Ecology and the Environment, 20(3), 152–160. https://doi.org/10.1002/fee.2445 Search in Google Scholar

Groeninzicht, C. (2022). 3-30-300 regel: Het stedelijk landschap benchmarken, waar wordt het beter. The 3-30-300 rule: Benchmarking the urban landscape, where does it get better. https://storymaps.arcgis.com/stories/95df17304bca48ceb58383d57fd81ba4 Search in Google Scholar

Guitard, J., Martí, I., Rull, C. (2017). Master Plan for Barcelona’s Trees 2017 to 2037. https://ajuntament.barcelona.cat/ecologiaurbana/sites/default/files/Pla-director-arbrat-barcelona-ENG.pdf Search in Google Scholar

Halás, M., Kladivo, P., & Roubínek, P. (2013). Koncept kompaktního města: příspěvek k výzkumu a správě. In Sborník příspěvků: XVI. mezinárodní kolokvium o regionálních vědách (pp. 140–146). Masaryk University Press. https://doi.org/10.5817/CZ.MUNI.P210-6257-2013-16 Search in Google Scholar

Iungman, T., Cirach, M., Marando, F., Barboza, E. P., Khomenko, S., Masselot, P., ..., & Nieuwenhuijsen, M. (2023). Cooling cities through urban green infrastructure: a health impact assessment of European cities. The Lancet, 401(10376), 577–589. https://doi.org/10.1016/S0140-6736(22)02585-5 Search in Google Scholar

Janků, Z., Belda, M., Bureš, M., Krč, P., Lehnert, M., Resler, J., ..., & Geletič, J. (2024). Towards climate-responsible tree positioning: Detailed effects of trees on heat exposure in complex urban environments. Urban Forestry & Urban Greening, 101, 128500. https://doi.org/10.1016/j.ufug.2024.128500 Search in Google Scholar

Kabisch, N., Strohbach, M., Haase, D., & Kronenberg, J. (2016). Urban green space availability in European cities. Ecological indicators, 70, 586–596. https://doi.org/10.1016/j.ecolind.2016.02.029 Search in Google Scholar

Kakoulaki, G., Martinez, A., & Florio, P. (2021). Non-commercial light detection and ranging (lidar) data in Europe. Publications Office of the European Union: Luxemburg. Search in Google Scholar

Katz, D. S., Batterman, S. A., & Brines, S. J. (2020). Improved classification of urban trees using a widespread multi-temporal aerial image dataset. Remote Sensing, 12(15), 2475. https://doi.org/10.3390/rs12152475 Search in Google Scholar

Koeser, A., Hauer, R., Andreu, M., Northrop, R., Clarke, M., Diaz, J., ..., & Zarger, R. (2024). Using the 3-30-300 Rule to Assess Urban Forest Access and Preferences in Florida (United States). Arboriculture & Urban Forestry, 50(3), 241–257. https://doi.org/10.48044/jauf.2024.007 Search in Google Scholar

Kong, F., Yin, H., Nakagoshi, N., & Zong, Y. (2010). Urban green space network development for biodiversity conservation: identification based on graph theory and gravity modeling. Landscape and Urban Planning, 95(1–2), 16–27. https://doi.org/10.1016/j.landurbplan.2009.11.001 Search in Google Scholar

Konijnendijk, C. (2021). The 3-30-300 rule for urban forestry and greener cities. Biophilic cities journal, 4(2), 2. Search in Google Scholar

Konijnendijk, C. C. (2023). Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: Introducing the 3-30-300 rule. Journal of Forestry Research, 34(3), 821–830. https://doi.org/10.1007/s11676-022-01523-z Search in Google Scholar

Konijnendijk, C. (2024). Urban green spaces: why rethinking is needed. In Rethinking Urban Green Spaces (pp. 1–12). Edward Elgar Publishing. Search in Google Scholar

Konijnendijk, C., Lind, C., Littke, H., Voets, D., Oudin, A., Östberg, J., ..., & Thoresen, W. (2025). Yggdrasil – The Living Nordic City. Nordic Council of Ministers. https://doi.org/10.6027/temanord2025-522 Search in Google Scholar

Krüger, E., Drach, P., & Broede, P. (2017). Outdoor comfort study in Rio de Janeiro: site-related context effects on reported thermal sensation. International Journal of Biometeorology, 61, 463–475. https://doi.org/10.1007/s00484-016-1226-8 Search in Google Scholar

Květoňová, V., Pánek, J., Geletič, J., Šimáček, P., & Lehnert, M. (2024). Where is the heat threat in a city? Different perspectives on people-oriented and remote sensing methods: The case of Prague. Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2024.e36101 Search in Google Scholar

Lehnert, M., Brabec, M., Jurek, M., Tokar, V., & Geletič, J. (2021). The role of blue and green infrastructure in thermal sensation in public urban areas: A case study of summer days in four Czech cities. Sustainable Cities and Society, 66, 102683. https://doi.org/10.1016/j.scs.2020.102683 Search in Google Scholar

Lehnert, M., Pánek, J., Kopp, J., Geletič, J., Květoňová, V., & Jurek, M. (2023). Thermal comfort in urban areas and its improvement through participatory mapping: A case study of two Central European cities. Landscape and Urban Planning, 233, 104713. https://doi.org/10.1016/j.landurbplan.2023.104713 Search in Google Scholar

Li, H., Chen, W., & He, W. (2015). Planning of green space ecological network in urban areas: an example of Nanchang, China. International Journal of Environmental Research and Public Health, 12(10). https://doi.org/10.3390/ijerph121012889 Search in Google Scholar

Lottrup, L., Stigsdotter, U. K., Meilby, H., & Claudi, A. G. (2015). The workplace window view: a determinant of office workers’ work ability and job satisfaction. Landscape Research, 40(1), 57–75. https://doi.org/10.1080/01426397.2013.829806 Search in Google Scholar

Miles, E. (2022). Nature Is A Human Right: Why We’re Fighting for Green in a Gray World. Penguin. Search in Google Scholar

Ministry for Regional Development (2022). Charakter a struktura zástavby městských sídel v územních plánech. Search in Google Scholar

Nieuwenhuijsen, M. J. (2021). New urban models for more sustainable, liveable and healthier cities post covid19; reducing air pollution, noise and heat island effects and increasing green space and physical activity. Environment International, 157, 106850. https://doi.org/10.1016/j.envint.2021.106850 Search in Google Scholar

Nieuwenhuijsen, M., Dadvand, P., Márquez, S., Bartoll, X., Barboza, E. P., Cirach, M., …, & Zijlema, W. L. (2022). The evaluation of the 3-30-300 green space rule and mental health. Environmental Research, 215, 114387. https://doi.org/10.1016/j.envres.2022.114387 Search in Google Scholar

Prevedello, J. A., Almeida-Gomes, M., & Lindenmayer, D. B. (2017). The importance of scattered trees for biodiversity conservation: a global meta-analysis. Journal of Applied Ecology, 55(1), 205–214. https://doi.org/10.1111/1365-2664.12943 Search in Google Scholar

Ptáček, P., Szczyrba, Z., & Fňukal, M. (2007). Proměny prostorové struktury města Olomouce s důrazem na rezidenční funkce. Urbanismus a územní rozvoj, 10(2), 19–26. https://geography.upol.cz/soubory/lide/fnukal/clanek2007-5.pdf Search in Google Scholar

Raihan, A. (2023). A review on the role of green vegetation in improving urban environmental quality. Eco Cities, 4(2), 2387. https://doi.org/10.54517/ec.v4i2.2387 Search in Google Scholar

Rheden (2024). De 3-30-300 regel voor een groene en gezonde leefomgeving. https://www.watisjouwrheden.nl/actueel/nieuws/de-3-30-300-regelvoor-een-groene-en-gezonde-leefomgeving/ Search in Google Scholar

Rugel, E. J., Carpiano, R. M., Henderson, S. B., & Brauer, M. (2019). Exposure to natural space, sense of community belonging, and adverse mental health outcomes across an urban region. Environmental Research, 171, 365–377. https://doi.org/10.1016/j.envres.2019.01.034 Search in Google Scholar

Samson, R. (2017). Introduction: Urban trees as environmental engineers. In D. Pearlmutter, C. Calfapietra, R. Samson, L. O’Brien, S. Krajter Ostoić, …, & R. Alonso del AmoD (Eds.), The Urban Forest: cultivating green infrastructure for people and the environment. Future City, Vol 7. (pp. 3–5). Springer. https://doi.org/10.1007/978-3-319-50280-9_1 Search in Google Scholar

Selmi, W., Weber, C., Rivière, E., Blond, N., Mehdi, L., & Nowak, D. J. (2016). Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban Forestry & Urban Greening, 17, 192–201. https://doi.org/10.1016/j.ufug.2016.04.010 Search in Google Scholar

Seiferling, I., Naik, N., Ratti, C., & Proulx, R. (2017). Green streets − Quantifying and mapping urban trees with street-level imagery and computer vision. Landscape and Urban Planning, 165, 93–101. https://doi.org/10.1016/j.landurbplan.2017.05.010 Search in Google Scholar

Sharmin, M., Tjoelker, M. G., Esperón-Rodríguez, M., Katlav, A., Gilpin, A., Rymer, P. D., …, & Power, S. A. (2024). Urban greening with shrubs can supercharge invertebrate abundance and diversity. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-58909-8 Search in Google Scholar

Shartova, N., Mironova, E., Varentsov, M., Grischenko, M., & Konstantinov, P. (2024). Exploring intra-urban thermal stress vulnerability within 15-minute city concept: Example of heat waves 2021 in Moscow. Sustainable Cities and Society, 114, 105729. https://doi.org/10.1016/j.scs.2024.105729 Search in Google Scholar

Stewart, I. D., & Oke, T. R.(2012). Local Climate Zones for Urban Temperature Studies. Bulletin of the American Meteorological Society, 93(12), 1879–1900. doi.org/10.1175/BAMS-D-11-00019.1 Search in Google Scholar

Torkfar, P., & Russo, A. (2023). Assessing the benefits of climatesensitive design with nature-based solutions for climate change adaptation in urban regeneration: a case study in Cheltenham, UK. Sustainability, 15(22), 15855. https://doi.org/10.3390/su152215855 Search in Google Scholar

UNECE Annual Report 2023 (2023). United Nations Economic Commission for Europe. https://unece.org/sites/default/files/2024-03/UNECE_AR2023_WEB_FV_reduced.pdf Search in Google Scholar

UNPD (2019). World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). New York: United Nations. population.un.org/wup/Publications/Files/WUP2018-Report.pdf Search in Google Scholar

Wang, G., & Yang, H. (2024). Optimization of green space pattern for alleviating the urban heat island effect in qiantang district. Atlantis Highlights in Engineering, 274–282. https://doi.org/10.2991/978-94-6463-398-6_27 Search in Google Scholar

Weerasuriya, R., Henderson-Wilson, C., & Townsend, M. (2019). A systematic review of access to green spaces in healthcare facilities. Urban Forestry & Urban Greening, 40, 125–132. https://doi.org/10.1016/j.ufug.2018.06.019 Search in Google Scholar

Weinstein, B. G., Marconi, S., Bohlman, S. A., Zare, A., Singh, A., Graves, S. J., & White, E. P. (2021). A remote sensing derived data set of 100 million individual tree crowns for the National Ecological Observatory Network. Elife, 10, e62922. https://doi.org/10.7554/eLife.62922 Search in Google Scholar

Weinstein, B. G., Marconi, S., Bohlman, S., Zare, A., & White, E. (2019). Individual tree-crown detection in RGB imagery using semi-supervised deep learning neural networks. Remote Sensing, 11(11), 1309. https://doi.org/10.3390/rs11111309 Search in Google Scholar

Weiss, L., Ompad, D., Galea, S., & Vlahov, D. (2007). Defining neighborhood boundaries for urban health research. American Journal of Preventive Medicine, 32(6), S154–S159. https://doi.org/10.1016/j.amepre.2007.02.034 Search in Google Scholar

Wen, M., Zhang, X., Harris, C. D., Holt, J. B., & Croft, J. B. (2013). Spatial disparities in the distribution of parks and green spaces in the USA. Annals of Behavioral Medicine, 45(suppl_1), S18–S27. https://doi.org/10.1007/s12160-012-9426-x Search in Google Scholar

Zhang, J., Browning, M. H., Liu, J., Cheng, Y., Zhao, B., & Dadvand, P. (2023). Is indoor and outdoor greenery associated with fewer depressive symptoms during COVID-19 lockdowns? A mechanistic study in Shanghai, China. Building and Environment, 227, 109799. https://doi.org/10.1016/j.buildenv.2022.109799 Search in Google Scholar

Zheng, Y., Lin, T., Hamm, N. A., Liu, J., Zhou, T., Geng, H., ..., & Chen, T. (2024). Quantitative evaluation of urban green exposure and its impact on human health: A case study on the 3–30-300 green space rule. Science of the Total Environment, 924, 171461. https://doi.org/10.1016/j.scitotenv.2024.171461 Search in Google Scholar

Ziter, C. D., Pedersen, E. J., Kucharik, C. J., & Turner, M. G. (2019). Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. PNAS, 116(15), 7575–7580. https://doi.org/10.1073/pnas.1817561116 Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Biznes i ekonomia, Zarządzanie biznesem, Branże, Zarządzanie środowiskiem, Nauki o Ziemi, Geografia