Zacytuj

Alzubi, E., Atieh, A. M., Abu Shgair, K., Damiani, J., Sunna, S., & Madi, A. (2019). Hybrid integrations of value stream mapping, theory of constraints and simulation: application to wooden furniture industry. Processes, 7(11), 816. https://doi.org/10.3390/pr7110816 Search in Google Scholar

Baldwin, C. Y. (2015, May). Bottlenecks, modules and dynamic architectural capabilities. Harvard Business School Finance Working Paper, (15-028). https://doi.org/10.2139/ssrn.2512209 Search in Google Scholar

Bandara, B. N. S., Wijesinghe, H. G. I. M., Senevirathne, A. M. W. K., & Dilrukshi, N. M. D. (2021). Root cause analysis for warming delay of resilient solid tire heel compound during manufacturing. Journal of Agriculture and Value Addition, 4(1), 46-54. Search in Google Scholar

Brito, T. B., dos Santos Silva, R. C., Botter, R. C., Pereira, N. N., & Medina, A. C. (2010, December). Discrete event simulation combined with multi-criteria decision analysis applied to steel plant logistics system planning. In Proceedings of the 2010 Winter Simulation Conference (pp. 2126-2137). IEEE. https://doi.org/10.1109/WSC.2010.5678862 Search in Google Scholar

Chetpattananondh, K., Dechwayukul, C., & Thongruang, W. (2008). An applied laser shade vibration measurement technique for rotating imbalance for quality testing of solid tires. Measurement, 41(8), 922-933. https://doi.org/10.1016/j.measurement.2008.01.003 Search in Google Scholar

Chiang, S. Y., Kuo, C. T., & Meerkov, S. M. (2000). DT-bottlenecks in serial production lines: theory and application. IEEE Trans Robot Autom, 16, 567–580. https://doi.org/10.1109/70.880806 Search in Google Scholar

Chiang, S. Y., Kuo, C. T., & Meerkov, S. M. (2001). Bottlenecks in serial production lines: identification and application. Mathematical Problems in Engineering, 7(6), 543-578. https://doi.org/10.1155/S1024123X01001776 Search in Google Scholar

Chuang, K. Y., Lai, C. H., Peng, Y. P., & Yen, T. Y. (2015). Characteristics of particle-bound polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in atmosphere used in carbon black feeding process at a tire manufacturing plant. Environmental Science and Pollution Research, 22, 19451-19460. https://doi.org/10.1007/s11356-015-5135-x Search in Google Scholar

Darayi, M., Eskandari, H., & Geiger, C. D. (2013). Using simulation-based optimization to improve performance at a tire manufacturing company. QScience Connect, 2013(1), 13. https://doi.org/10.5339/connect.2013.13 Search in Google Scholar

Dechwayukul, C., Kao-ien, W., Chetpattananondh, K., & Thongruang, W. (2010). Measuring service life and evaluating the quality of solid tires. Sonklanakarin Journal of Science and Technology, 32(4), 387. Search in Google Scholar

Gent, A. N. (1992). Engineering with rubber: How to design rubber components. Oxford University Press. Search in Google Scholar

Goldratt, E. M., & Cox, J. (1990). Theory of Constraints. Croton-on-Hudson. Search in Google Scholar

Govender, P., & Dewa, M. (2022). Use of kaizen principle and line balancing technique for process improvement in the assembly of automotive components. South African Journal of Industrial Engineering, 33(3), 69-82. https://dx.doi.org/10.7166/33-3-2790 Search in Google Scholar

Gunasekara, H. D. A. (2017). Effect of lignin base antioxidant on natural rubber base solid tyre tread compound (Master thesis, Moratuwa University). http://dl.lib.uom.lk/bitstream/handle/123/12906/TH3434-1.pdf?sequence=2 Search in Google Scholar

Gupta, V., Jain, R., Meena, M. L., & Dangayach, G. S. (2018). Six-sigma application in tire-manufacturing company: a case study. Journal of Industrial Engineering International, 14, 511-520. https://link.springer.com/article/10.1007/s40092-017-0234-6 Search in Google Scholar

Hao, Q., & Shen, W. (2008). Implementing a hybrid simulation model for a Kanban-based material handling system. Robotics and Computer-Integrated Manufacturing, 24(5), 635-646. https://doi.org/10.1016/j.rcim.2007.09.012 Search in Google Scholar

Heshmat, M., El-Sharief, M. A., & El-Sebaie, M. G. (2013). Simulation modeling of production lines: a case study of cement production line. Journal of Engineering Sciences, 41(3),1045-1053. https://doi.org/10.21608/jesaun.2013.114780 Search in Google Scholar

Ilie, G., & Ciocoiu, C. N. (2010). Application of fishbone diagram to determine the risk of an event with multiple causes. Management Research and Practice, 2(1), 1-20. Search in Google Scholar

Kahraman, M. M., Rogers, W. P., & Dessureault, S. (2020). Bottleneck identification and ranking model for mine operations. Production Planning & Control, 31(14), 1178-1194. https://doi.org/10.1080/09537287.2019.1701231 Search in Google Scholar

Karthikeyan, A. P. (2010). Detection of bottlenecks for multiple products and mitigation using alternative process plans (Doctoral dissertation, Wichita State University). Search in Google Scholar

Karuppusami, G., & Gandhinathan, R. (2006). Pareto analysis of critical success factors of total quality management: A literature review and analysis. The TQM magazine, 18(4), 372-385. https://doi.org/10.1108/09544780610671048 Search in Google Scholar

Kasemset, C., Pinmanee, P., & Umarin, P. (2014, October). Application of ECRS and simulation techniques in bottleneck identification and improvement: A paper package factory. In Proceedings of the Asia Pacific Industrial Engineering & Management Systems Conference (pp. 1477-1484). APIEMS. Search in Google Scholar

Kikolski, M. (2016). Identification of production bottlenecks with the use of plant simulation software. Economics and Management, 8(4), 103-112. https://doi.org/10.1515/emj-2016-0038 Search in Google Scholar

Kitaw, D., Matebu, A., & Tadesse, S. (2010). Assembly line balancing using simulation technique in a garment manufacturing firm. Zede Journal, 27, 69-80. Search in Google Scholar

Krishnan, S., Dev, A.S., Suresh, R., Sumesh, A., & Rameshkumar, K. (2018). Bottleneck identification in a tyre manufacturing plant using simulation analysis and productivity improvement. Materials Today: Proceedings, 5(11), 24720-24730. https://doi.org/10.1016/j.matpr.2018.10.270 Search in Google Scholar

Lai, X., Shui, H., Ding, D., & Ni, J. (2021). Data-driven dynamic bottleneck detection in complex manufacturing systems. Journal of Manufacturing Systems, 60, 662-675. https://doi.org/10.1016/j.jmsy.2021.07.016 Search in Google Scholar

Li, F., Liu, F., Liu, J., Gao, Y., Lu, Y., Chen, J., Yang, H., & Zhang, L. (2018). Thermo-mechanical coupling analysis of transient temperature and rolling resistance for solid rubber tire: numerical simulation and experimental verification. Composites Science and Technology, 167, 04-410. https://doi.org/10.1016/j.compscitech.2018.08.034 Search in Google Scholar

Li, L., Chang, Q., & Ni, J. (2008). Data-driven bottleneck detection of manufacturing systems. International Journal of Production Research, 47(18), 5019-5036. https://doi.org/10.1080/00207540701881860 Search in Google Scholar

Li, L., Chang, Q., Ni, J., Xiao, G., & Biller, S. (2007, July). Bottleneck detection of manufacturing systems using data driven method. In 2007 IEEE international symposium on assembly and manufacturing (pp. 76-81). IEEE. https://doi.org/10.1109/ISAM.2007.4288452 Search in Google Scholar

Li, L. (2018). A systematic-theoretic analysis of data-driven throughput bottleneck detection of production systems. Journal of Manufacturing Systems, 47, 43-52. https://doi.org/10.1016/j.jmsy.2018.03.001 Search in Google Scholar

Liong, C. Y., & Loo, C. S. (2009). A simulation study of warehouse loading and unloading systems using Arena. Journal of Quality Measurement and Analysis, 5(2), 45-56. Search in Google Scholar

National Highway Traffic Safety Administration (2006). The Pneumatic Tire. USA Government. https://www.nhtsa.gov/sites/nhtsa.gov/files/pneumatictire_hs-810-561.pdf Search in Google Scholar

Newsmantraa. ( 2022, November 29). Press-on Band Tires (POB Tires) Market Overview, Demand, Size, Growth & Forecast 2030 Analysis. Digital Journal. https://t.ly/-FTtR Search in Google Scholar

Phromjan, J., & Suvanjumrat, C. (2018). A suitable constitutive model for solid tire analysis under quasi-static loads using finite element method. Engineering Journal, 22(2), 141-155. https://doi.org/10.4186/ej.2018.22.2.141 Search in Google Scholar

Premarathna, W. A. A. S., Jayasinghe, J. A. S. C., Wijesundara, K. K., Gamage, P., Ranatunga, R. R. M. S. K., & Senanayake, C. D. (2021). Investigation of design and performance improvements on solid resilient tires through numerical simulation. Engineering Failure Analysis, 128. https://doi.org/10.1016/j.engfailanal.2021.105618 Search in Google Scholar

Premarathna, W. A .A. S., Jayasinghe, J. A. S. C., Gamage, P., Senanayake, C. D., Wijesundara, K. K., & Ranatunga, R. R. M. S. K. (2022). Analysis of factors influencing on performance of solid tires: combined approach of design of experiments and thermo-mechanical numerical simulation. European Journal of Mechanics - A/Solids, 96, Article 104680, https://doi.org/10.1016/j.euromechsol.2022.104680 Search in Google Scholar

Rahman, C., & Sabuj, S. U. (2015). Process flow improvement proposal of a batch manufacturing system using arena simulation modeling. Review of General Management, 21(1), 63-77. Search in Google Scholar

Rasib, A. A. (2021). Production Smoothness Improvement through ARENA Application in the Food Manufacturing Industry. Turkish Journal of Computer and Mathematics Education, 12(3), 3516-3526. Search in Google Scholar

Roser, C., Nakano, M., & Tanaka, M. (2001, December). A practical bottleneck detection method. In Proceeding of the 2001 winter simulation conference (Cat. No. 01CH37304) (Vol. 2, pp. 949-953). IEEE. https://doi.org/10.1109/WSC.2001.977398 Search in Google Scholar

Schroer, B. J., & Tseng, F. T. (1987, December). Modeling complex manufacturing systems using simulation. In Proceedings of the 19th conference on Winter simulation (pp. 677-682). https://doi.org/10.1145/318371.318683 Search in Google Scholar

Sengupta, S., Das, K., & Vantil, R. P. (2008, December). A new method for bottleneck detection. In 2008 Winter Simulation Conference (pp. 1741-1745). IEEE. https://doi.org/10.1109/WSC.2008.4736261 Search in Google Scholar

Sharda, B., & Bury, S. J. (2010, December). Bottleneck analysis of a chemical plant using discrete event simulation. In Proceedings of the 2010 Winter Simulation Conference (pp. 1547-1555). IEEE. https://doi.org/10.1109/WSC.2010.5678916 Search in Google Scholar

Siderska, J. (2016). Application of tecnomatix plant simulation for modeling production and logistics processes. Business, Management and Education, 14(1), 64-73. https://doi.org/10.3846/bme.2016.316 Search in Google Scholar

Sri Lanka Export Development Board. (2022, 10 8). https://www.srilankabusiness.com/rubber/solid-tyres.html Search in Google Scholar

Srivastava, S. K., & Bhuyan, B. (2018). Rubber Nanocomposites for Tyre Tread Applications. Rubber Nanocomposites: and Nanotextiles. Walter de Gruyter. https://doi.org/10.1515/9783110643879-002 Search in Google Scholar

Stîngă, F., Severin, I., Mitrache, I. A., & Lascu, E. (2020). Redesign of the curing area of the tire manufacturing process. Sustainability, 12(17), 6909. https://doi.org/10.3390/su12176909 Search in Google Scholar

Su, X., Lu, J., Chen, C., Yu, J., & Ji, W. (2022). Dynamic bottleneck identification of manufacturing resources in complex manufacturing system. Applied Sciences, 12(4195). https://doi.org/10.3390/app12094195 Search in Google Scholar

Tague, N. R. (2005). The Quality Toolbox, 600. ASQ Quality Press. Search in Google Scholar

Tang, H. (2019). A new method of bottleneck analysis for manufacturing systems. Manufacturing Letters, 19, 21-24. https://doi.org/10.1016/j.mfglet.2019.01.003 Search in Google Scholar

Thombert. (2010). Polyurethane and Rubber Tires: A Comparative Overview. https://rb.gy/fyzdmq Search in Google Scholar

Urban, W., & Rogowska, P. (2018). The case study of bottlenecks identification for practical implementation to the theory of constraints. Multidisciplinary Aspects of Production Engineering, 1(1), 399-405. https://sciendo.com/it/article/10.2478/mape-2018-0051 Search in Google Scholar

Urban, W., & Rogowska, P. (2020). Methodology for bottleneck identification in a production system when implementing TOC. Engineering Management in Production and Services, 12(2), 74-82. https://doi.org/10.2478/emj-2020-0012 Search in Google Scholar

Üstün, S. (2005). Analysis by simulation of bottleneck problems in a job shop production system (Doctoral dissertation, MSc Thesis). Institute of Science, Karadeniz Technical University, Trabzon. Search in Google Scholar

Velumani, S., & Tang, H. (2017). Operations status and bottleneck analysis and improvement of a batch process manufacturing line using discrete event simulation. Procedia Manufacturing, 10, 100-111. https://doi.org/10.1016/j.promfg.2017.07.033 Search in Google Scholar

Wang, T., Guinet, A., Belaidi, A., & Besombes, B. (2009). Modelling and simulation of emergency services with ARIS and Arena. Case study: the emergency department of Saint Joseph and Saint Luc Hospital. Production Planning and Control, 20(6), 484-495. https://doi.org/10.1080/09537280902938605 Search in Google Scholar

Wang, Y., Zhao, Q., & Zheng, D. (2005). Bottlenecks in production networks: an overview. Journal of Systems Science and Systems Engineering, 14(3), 347-363. https://doi.org/10.1007/s11518-006-0198-3 Search in Google Scholar

Wattegedara, B. M. H. I. B., & Egodage, S. M. (2018). Effect of short nylon fiber loading on high load bearing press-on-band tire tread compound. Annual Sessions of IESL, A1, 731–737. Search in Google Scholar

Xiao, Z., Pramanik, A., Basak, A. K., Prakash, C. & Shankar, S. (2022). Material recovery and recycling of waste tyres: a review. Cleaner Materials, 5, 100115, https://doi.org/10.1016/j.clema.2022.100115. Search in Google Scholar

Yemane, A., Gebremicheal, G., Meraha, T., & Hailemicheal, M. (2020). Productivity improvement through line balancing by using simulation modeling. Journal of Optimization in Industrial Engineering, 13(1), 153-165. Search in Google Scholar

eISSN:
2392-8042
Język:
Angielski