Zacytuj

1. Polat, M., Takeshima, Sh.N., Aida, Y. (2017). Epidemiology and genetic diversity of bovine leukemia virus. Virol J. 14(1): 209. https://doi.org/10.1186/s12985-017-0876-4 PMid:29096657 PMCid:PMC566902310.1186/s12985-017-0876-4Search in Google Scholar

2. Hopkins, S.G., Digiacomo, R.F. (1997). Natural transmission of bovine leukemia virus in dairy and beef cattle. Vet Clin North Am Food Anim Pract. 13(1): 107-128. https://doi.org/10.1016/S0749-0720(15)30367-410.1016/S0749-0720(15)30367-4Search in Google Scholar

3. Panei, C.J., Larsen, A.E., Fuentealba, N.A., Metz, G.E., Echeverría, M.G., Galosi, C.M., Valera, A.R. (2019). Study of horn flies as vectors of bovine leukemia virus. Open Vet J. 9(1): 33-37. https://doi.org/10.4314/ovj.v9i1.6 PMid:31086763 PMCid:PMC650086010.4314/ovj.v9i1.6Search in Google Scholar

4. Kohara, J., Takeuchi, M., Hirano, Y., Sakurai, Y., Takahashi, T. (2018). Vector control efficacy of fly nets on preventing bovine leukemia virus transmission. J Vet Med Sci. 80(10): 1524-1527. https://doi.org/10.1292/jvms.18-0199 PMid:30122691 PMCid:PMC620750910.1292/jvms.18-0199Search in Google Scholar

5. Ruiz, V., Porta, N.G., Lomonaco, M., Trono, K., Alvarez, I. (2018). Bovine leukemia virus infection in neonatal calves. Risk factors and control measures. Front Vet Sci. 5, 267. https://doi.org/10.3389/fvets.2018.00267 PMid:30410920 PMCid:PMC620962710.3389/fvets.2018.00267Search in Google Scholar

6. Nagy, D.W., Tyler, J.W., Kleiboeker, S.B. (2007). Decreased periparturient transmission of bovine leukosis virus in colostrum-fed calves. J Vet Intern Med. 21(5): 1104-1107. https://doi.org/10.1111/j.1939-1676.2007.tb03071.x PMid:1793957110.1111/j.1939-1676.2007.tb03071.xSearch in Google Scholar

7. Nekouei, O., Vanleeuwen, J., Stryhn, H., Kelton, D., Keefe, G. (2016). Lifetime effects of infection with bovine leukemia virus on longevity and milk production of dairy cows. Prev Vet Med. 133, 1-9. https://doi.org/10.1016/j.prevetmed.2016.09.011 PMid:2772002210.1016/j.prevetmed.2016.09.011Search in Google Scholar

8. Erskine, J.R., Bartlett, P.T., Byrem, T.M., Render, C.L., Febvey, C., Houseman, J.T. (2012). Association between bovine leukemia virus, production, and population age in Michigan dairy herds. J Dairy Sci. 95(2): 727-734. https://doi.org/10.3168/jds.2011-4760 PMid:2228133710.3168/jds.2011-4760Search in Google Scholar

9. Pezler, K. D. (1997). Economics of bovine leukemia virus infection. Vet Clin North Am Food Anim Pract. 13(1): 129-141. https://doi.org/10.1016/S0749-0720(15)30368-610.1016/S0749-0720(15)30368-6Search in Google Scholar

10. Ott, S.L., Johnson, R., Wells, S.J. (2003). Association between bovine-leukosis virus seroprevalence and herd-level productivity on US dairy farms. Prev Vet Med. 61(4): 249-261. https://doi.org/10.1016/j.prevetmed.2003.08.003 PMid:1462341010.1016/j.prevetmed.2003.08.00314623410Search in Google Scholar

11. OIE. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Vol. Chapter 3.4.9. 2019.Search in Google Scholar

12. Kuczewski, A., Orsel, K, Barkema, H.W., Kelton, D.F., Hutchins, W.A., Van Der Meer, F. (2018). Short communication: Evaluation of 5 different ELISA for the detection of bovine leukemia virus antibodies. J Dairy Sci. 101(3): 2433-2437. https://doi.org/10.3168/jds.2017-13626 PMid:2927496310.3168/jds.2017-1362629274963Search in Google Scholar

13. Sandev, N., Ilieva, D., Sizov, I., Rusenova, N., Iliev, E. (2006). Prevalence of enzootic bovine leukosis in the Republic of Bulgaria in 1997-2004. Vet Arhiv. 76(3): 263-268.Search in Google Scholar

14. Bennett, S., Woods, T., Liyanage, W.M., Smith, D.L. (1991). A simplified general method for cluster-sample surveys of health in developing countries. World Health Stat. Q. 44(3): 98-106.Search in Google Scholar

15. Commission of the European Communities: European Commission Decision of 15 December 2009 amending Annex D to Council Directive 64/432/EEC as regards the diagnostic tests for enzootic bovine leucosis (2009/976/EU).” Official Journal of the European Union 336 (n.d.): 36-41.Search in Google Scholar

16. Dean, A.G., Sullivan, K.M., Soe, M.M. OpenEpi: Open source epidemiologic statistics for public health. Version. Updated 2013. Available at: http://openepi.com/Menu/OE_Menu.htm.Search in Google Scholar

17. Wilson, E.B., (1927). Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association 22(158): 209-212. https://doi.org/10.1080/01621459.1927.1050295310.1080/01621459.1927.10502953Search in Google Scholar

18. Rothman, K.J., Boice, J.D.Jr. (1979). Epidemiologic analysis with a programmable calculator. NIH Pub No. 79-1649. Bethesda, MD: National Institutes of Health, pp. 31-32.Search in Google Scholar

19. Wallis, S. (2013). Binomial confidence intervals and contingency tests: mathematical fundamentals. JQL. 20(3): 178-208. https://doi.org/10.1080/09296174.2013.79991810.1080/09296174.2013.799918Search in Google Scholar

20. Cannon, R.M., Roe, R.T. (1982). Livestock disease surveys. A field manual for veterinarians. National government publication. Bureau of rural science, Department of primary industry. Australian Government Publishing Service, Canberra, pp 14.Search in Google Scholar

21. Şevik, M., Avci, O., Ince, O.B. (2015). An 8-year longitudinal sero-epidemiological study of bovine leukaemia virus (BLV) infection in dairy cattle in Turkey and analysis of risk factors associated with BLV seropositivity. Trop Anim Health Prod. 47(4): 715-720. https://doi.org/10.1007/s11250-015-0783-x PMid:2570856610.1007/s11250-015-0783-x25708566Search in Google Scholar

22. Murakami, K., Kobayashi, S., Konishi, M., Yamamoto, T., Tsutsui, T. (2011). The recent prevalence of bovine leukemia virus (BLV) infection among Japanese cattle. Vet Microbiol. 148(1): 84-88. https://doi.org/10.1016/j.vetmic.2010.08.001 PMid:2083295610.1016/j.vetmic.2010.08.00120832956Search in Google Scholar

23. Frie, M.C., Coussens, P.M. (2015). Bovine leukemia virus: A major silent threat to proper immune responses in cattle. Vet Immunol Immunopathol. 163(3-4): 103-114. https://doi.org/10.1016/j.vetimm.2014.11.014 PMid:2555447810.1016/j.vetimm.2014.11.01425554478Search in Google Scholar

24. Wu, M.C., Shanks, R.D., Lewin, H.A. (1989). Milk and fat production in dairy cattle influenced by advanced subclinical bovine leukemia virus infection. Proc Natl Acad Sci. USA. 86(3): 993-996. https://doi.org/10.1073/pnas.86.3.993 PMid:2536940 PMCid:PMC28660510.1073/pnas.86.3.9932866052536940Search in Google Scholar

25. Yang, Y., Fan, W., Mao, Y., Yang, Z., Lu, G., Zhang, R., Zhang, H., Szeto, C., Wang, C. (2016). Bovine leukemia virus infection in cattle of China: Association with reduced milk production and increased somatic cell score. J Dairy Sci. 99(5): 3688-3697. https://doi.org/10.3168/jds.2015-10580 PMid:2692305010.3168/jds.2015-1058026923050Search in Google Scholar

26. Oltenacu, P.A., Algers, B. (2005). Selection for increased production and the welfare of dairy cows: are new breeding goals needed? Ambio. 34(4-5): 311-315. https://doi.org/10.1579/0044-7447-34.4.311 PMid:1609226110.1579/0044-7447-34.4.311Search in Google Scholar

27. LaDronka, R.M., Ainsworth, S., Wilkins, M.J., Norby, B., Byrem, T.M., Bartlett, P.C. (2018). Prevalence of bovine leukemia virus antibodies in US dairy cattle. Vet Med Int. 4, 1-8. https://doi.org/10.1155/2018/5831278 PMid:30534354 PMCid:PMC625219710.1155/2018/5831278625219730534354Search in Google Scholar

eISSN:
1857-7415
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other, Medicine, Basic Medical Science, Veterinary Medicine