Otwarty dostęp

Agriculture Electrification, Emerging Technologies, Trends and Barriers: A Comprehensive Literature Review


Zacytuj

World Health Organization. (‎2018)‎. COP24 Special Report: Health and Climate Change. Geneva: World Health Organization. Search in Google Scholar

Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F. N., & Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2, 198–209. doi: 10.1038/s43016-021-00225-9. Search in Google Scholar

Directorate-General for Agriculture and Rural Development. (2021). Factsheet: Green Deal Targets for 2030 and Agricultural Production Studies. Brussels: European Commission. Search in Google Scholar

European Commission. (2022). Farm to Fork strategy. Available at: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en Search in Google Scholar

Rahman, M.M., Khan, I., Field, D.L., Techato, K., & Alameh, K. (2022). Powering Agriculture: Present Status, Future Potential, and Challenges of Renewable Energy Applications. Renewable Energy, 188, 731–749. doi: 10.1016/j.renene.2022.02.065. Search in Google Scholar

Malik, A., & Kohli, S. (2020). Electric Tractors: Survey of Challenges and Opportunities in India. Materials Today: Proceedings, 28 (4), 2318–2324. doi: 10.1016/j.matpr.2020.04.585. Search in Google Scholar

Webster, J., & Watson, R. T. (2002). Analyzing the Past to Prepare for the Future: Writing a Literature Review. MIS Quarterly, 26 (2), xiii–xxiii. Search in Google Scholar

Lazdins, R., Mutule, A., & Zalostiba, D. (2021). PV Energy Communities— Challenges and Barriers from a Consumer Perspective: A Literature Review. Energies, 14 (16), 4873. doi: 10.3390/en14164873. Search in Google Scholar

IRENA & FAO. (2021). Renewable Energy for Agri-food Systems – Towards the Sustainable Development Goals and the Paris Agreement. Abu Dhabi & Rome: IRENA & FAO. doi: 10.4060/cb7433en. Search in Google Scholar

Goetzberger, A., & Zastrow, A. (1982). On the Coexistence of Solar-Energy Conversion and Plant Cultivation. International Journal of Solar Energy, 1 (1), 55–69. doi: 10.1080/01425918208909875. Search in Google Scholar

Jing, R., Liu, J., Zhang, H., Zhong, F., Liu, Y., & Lin, J. (2022). Unlock the Hidden Potential of Urban Rooftop Agrivoltaics Energy-Food-Nexus. Energy, 256, 124626. doi: 10.1016/j.energy.2022.124626. Search in Google Scholar

Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., & Högy, P. (2019). Agrophotovoltaic Systems: Applications, Challenges, and Opportunities. A Review. Agronomy for Sustainable Development, 39, 35. doi: 10.1007/s13593-019-0581-3. Search in Google Scholar

Williams, H.J., Hashad, K., Wang, H., & Zhang, K.M. (2023). The Potential for Agrivoltaics to Enhance Solar Farm Cooling. Applied Energy, 332, 120478. doi: 10.1016/j.apenergy.2022.120478. Search in Google Scholar

Feuerbacher, A., Laub, M., Högy, P., Lippert, C., Pataczek, L., Schindele, S., … & Zikeli, S. (2021). An Analytical Framework to Estimate the Economics and Adoption Potential of Dual Land-Use Systems: The Case of Agrivoltaics. Agricultural Systems, 192, 103193. doi: 10.1016/j.agsy.2021.103193. Search in Google Scholar

Husain, A.A.F., Hasan, W.Z.W., Shafie, S., Hamidon, M.N., & Pandey, S.S. (2018). A Review of Transparent Solar Photovoltaic Technologies. Renewable and Sustainable Energy Reviews, 94, 779–791. DOI: 10.1016/j.rser.2018.06.031. Search in Google Scholar

Lozanova, S. (2022). Transparent Solar Panels: What this Emerging Technology could Mean for Installers. Available at https://www.greenlancer.com/post/transparent-solar-panels Search in Google Scholar

Lie, S., Bruno, A., Wong, L.H., & Etgar, L. (2022). Semitransparent Perovskite Solar Cells with > 13% Efficiency and 27% Transparency Using Plasmonic Au Nanorods. ACS Applied Materials & Interfaces, 14 (9), 11339–11349. doi: 10.1021/acsami.1c22748. Search in Google Scholar

Hassanien, R.H.E., Li, M., & Yin, F. (2018). The Integration of Semi-transparent Photovoltaics on Greenhouse Roof for Energy and Plant Production. Renewable Energy, 121, 377–388. doi: 10.1016/j. renene.2018.01.044. Search in Google Scholar

Ravishankar, E., Booth, R.E., Saravitz, C., Sederoff, H., Ade, H.W., & O’Connor, B.T. (2020). Achieving Net Zero Energy Greenhouses by Integrating Semitransparent Organic Solar Cells. Joule, 4 (2), 490–506. doi: 10.1016/j.joule.2019.12.018. Search in Google Scholar

Hannan, M.A., Wali, S.B., Ker, P.J., Abd Rahman, M.S., Mansor, M., Ramachandaramurthy, V.K., … & Dong, Z.Y. (2021). Battery Energy-Storage System: A Review of Technologies, Optimization Objectives, Constraints, Approaches, and Outstanding Issues. Journal of Energy Storage, 42, 103023. doi: 10.1016/j.est.2021.103023. Search in Google Scholar

Nurohmah, A.R., Nisa, S.S., Stulasti, K.N.R, Yudha, C.S., Suci, W.G., Aliwarga, K., … & Purwanto, A. (2022). Sodium-Ion Battery from Sea Salt: A Review. Materials for Renewable and Sustainable Energy, 11, 71–89. doi: 10.1007/s40243-022-00208-1. Search in Google Scholar

Rotella Junior, P., Rocha L.C.S., Morioka S.N., Bolis I., Chicco G., Mazza A., & Janda K. (2021). Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives. Energies, 14 (9), 2503. doi: 10.3390/en14092503. Search in Google Scholar

Lane, A.L., Boork, M., & Thollander, P. (2019). Barriers, Driving Forces and Non-Energy Benefits for Battery Storage in Photovoltaic (PV) Systems in Modern Agriculture. Energies, 12 (18), 3568. doi: 10.3390/en12183568. Search in Google Scholar

Ghobadpour, A., Monsalve, G., Cardenas, A., & Mousazadeh, H. (2022). Off-Road Electric Vehicles and Autonomous Robots in Agricultural Sector: Trends, Challenges, and Opportunities. Vehicles, 4 (3), 843–864. doi: 10.3390/vehicles4030047. Search in Google Scholar

Lagnelöv, O., Dhillon, S., Larsson, G., Nilsson, D., Larsolle, A., & Hansson, P.A. (2021). Cost Analysis of Autonomous Battery Electric Field Tractors in Agriculture. Biosystems Engineering, 204, 358–376. doi: 10.1016/j.biosystemseng.2021.02.005. Search in Google Scholar

van Leeuwen, L.B. (2020). Hydrogen or Battery Tractors: What Potential for Sustainable Grape Growing? I V E S Technical Reviews. doi: 10.20870/IVESTR.2020.4381. Search in Google Scholar

Lombardi, G.V., & Berni, R. (2021). Renewable Energy in Agriculture: Farmers Willingness-to-Pay for a Photovoltaic Electric Farm Tractor. Journal of Cleaner Production, 313, 127520. doi: 10.1016/j. jclepro.2021.127520. Search in Google Scholar

Caban, J., Vrabel, J., Šarkan, B., Zarajczyk, J., & Marczuk, A. (2018). Analysis of the Market of Electric Tractors in Agricultural Production. MATEC Web of Conferences, 244, 03005. doi: 10.1051/matecconf/201824403005. Search in Google Scholar

Scolaro, E., Beligoj, M., Estevez, M.P., Alberti, L., Renzi, M., & Mattetti, M. (2021). Electrification of Agricultural Machinery: A Review. IEEE Access, 9, 164520–164541. doi: 10.1109/ACCESS.2021.3135037. Search in Google Scholar

Dhond, R., Srivastav, U., Patil, B.T., & Vaishnav, H. (2021). Comparative Study of Electric Tractor and Diesel Tractor. IOP Conference Series: Materials Science and Engineering, 1168, 012003. doi: 10.1088/1757-899X/1168/1/012003. Search in Google Scholar

Tractor Junction. (2021). Tractor Horsepower Guide – How Much Horsepower is enough for Tractor? Available at https://www.tractorjunction.com/blog/how-much-horsepower-is-enough-for-tractor/ Search in Google Scholar

Ghobadpour, A., Boulon, L., Mousazadeh, H., Malvajerdi, A.S., & Rafiee, S. (2019). State of the Art of Autonomous Agricultural Off-road Vehicles Driven by Renewable Energy Systems. Energy Procedia, 162, 4–13. doi: 10.1016/j.egypro.2019.04.002. Search in Google Scholar

Dar, A.L. (2022). An Introduction to Electric Tractor. VIT University. doi: 10.13140/RG.2.2.29165.26087. Search in Google Scholar

Desai, A., Mukhopadhyay, I., & Ray, A. (2021). Techno-economic-environment analysis of solar PV smart microgrid for sustainable rural electrification in agriculture community. In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), (pp. 2281–2285), 20–25 June 2021. IEEE Xplore: IEEE. doi: 10.1109/PVSC43889.2021.9518454. Search in Google Scholar

Belouda, M., Jouini, Y., & Mami, A.K. (2022). Optimal configurations of a photovoltaic-diesel electrical production system with electrochemical and inertial storage for an isolated agricultural site electrification. In 2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET), (pp. 73–78), 22–25 March 2022. IEEE Xplore: IEEE. doi: 10.1109/IC_ASET53395.2022.9765929. Search in Google Scholar

Aziz, M.S., Khan, M.A., Khan, A., Nawaz, F., Imran, M., & Siddique, A. (2020). Rural electrification through an optimized off-grid microgrid based on biogas, solar, and hydro power. In 2020 International Conference on Engineering and Emerging Technologies (ICEET), (pp. 1–5), 22–23 February 2020. IEEE Xplore: IEEE. doi: 10.1109/ICEET48479.2020.9048222. Search in Google Scholar

eISSN:
2255-8896
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Physics, Technical and Applied Physics