1. bookTom 59 (2022): Zeszyt 5 (October 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2255-8896
Pierwsze wydanie
18 Mar 2008
Częstotliwość wydawania
6 razy w roku
Języki
Angielski
Otwarty dostęp

Fibre Optical Coupler Simulation by Comsol Multiphysics Software

Data publikacji: 13 Oct 2022
Tom & Zeszyt: Tom 59 (2022) - Zeszyt 5 (October 2022)
Zakres stron: 3 - 14
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2255-8896
Pierwsze wydanie
18 Mar 2008
Częstotliwość wydawania
6 razy w roku
Języki
Angielski

1. Puttnam, B. J., Rademacher, G., & Luís, R. S. (2021). Space-Division Multiplexing for Optical Fibre Communications. Optica, 8 (9), 1186–1203.10.1364/OPTICA.427631 Search in Google Scholar

2. Yoshikane, N., & Tsuritani, T. (2020). Recent progress in space-division multiplexing optical network technology. In: 2020 International Conference on Optical Network Design and Modeling (ONDM) (pp. 1–4). 18–21 May 2020, Barcelona, Spain, IEEE. Search in Google Scholar

3. Aiso, K., Tashiro, Y., Suzuki, T., & Yagi, T. (2001). Development of Er/Yb Co-doped Fibre for High-Power Optical Amplifiers. Furukawa Electric Review, 35–39. Search in Google Scholar

4. Supe, A., Olonkins, S., Udalcovs, A., Senkans, U., Mūrnieks, R., Gegere, L., … & Bobrovs, V. (2021). Cladding-Pumped Erbium/Ytterbium Co-Doped Fibre Amplifier for C-Band Operation in Optical Networks. Applied Sciences, 11 (4), 1702. Search in Google Scholar

5. Selvarajan, A., Kar, S., & Srinivas, T. (2003). Optical Fibre Communication: Principles and Systems. Tata McGraw-Hill Education. Search in Google Scholar

6. Filippov, V., Kerttula, J., Chamorovskii, Y., Golant, K., & Okhotnikov, O. G. (2010). Highly Efficient 750 W Tapered Double-Clad Ytterbium Fibre Laser. Optics Express, 18 (12), 12499–12512.10.1364/OE.18.01249920588376 Search in Google Scholar

7. Lei, C., Chen, Z., Leng, J., Gu, Y., & Hou, J. (2017). The Influence of Fused Depth on the Side-Pumping Combiner for All-Fibre Lasers and Amplifiers. Journal of Lightwave Technology, 35 (10), 1922–1928.10.1109/JLT.2017.2688347 Search in Google Scholar

8. Supe, A., Spolitis, S., Elsts, E., Murnieks, R., Doke, G., Senkans, U., ... & Bobrovs, V. (2020). Recent developments in cladding-pumped doped fibre amplifiers for telecommunications systems. In: 2020 22nd International Conference on Transparent Optical Networks (ICTON) (pp. 1–6). 19–23 July 2020, Bari, Italy, IEEE. Search in Google Scholar

9. Choi, I. S., Park, J., Jeong, H., Kim, J. W., Jeon, M. Y., & Seo, H. S. (2018). Fabrication of 4× 1 Signal Combiner for High-Power Lasers Using Hydrofluoric Acid. Optics Express, 26 (23), 30667–30677.10.1364/OE.26.03066730469960 Search in Google Scholar

10. Zhu, X., Wang, K., Wang, F., Zhao, C., & Cai, Y. (2018). Coupling Efficiency of a Partially Coherent Radially Polarized Vortex Beam into a Single-Mode Fibre. Applied Sciences, 8 (8), 1313. Search in Google Scholar

11. Guay-Lord, R., Attendu, X., Lurie, K. L., Majeau, L., Godbout, N., Bowden, A. K., ... & Boudoux, C. (2016). Combined Optical Coherence Tomography and Hyperspectral Imaging Using a Double-Clad Fibre Coupler. Journal of Biomedical Optics, 21 (11), 116008.10.1117/1.JBO.21.11.11600827829103 Search in Google Scholar

12. Dikmelik, Y., & Davidson, F. M. (2005). Fibre-Coupling Efficiency for Free-Space Optical Communication through Atmospheric Turbulence. Applied Optics, 44 (23), 4946–4952.10.1364/AO.44.00494616114533 Search in Google Scholar

13. Eydi, N., Feghhi, S. A. H., & Jafari, H. (2021). Comprehensive Approach to Determination of Space Proton-Induced Displacement Defects in Silica Optical Fiber. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 502, 95–101.10.1016/j.nimb.2021.06.014 Search in Google Scholar

14. Novoa, D., & Joly, N. Y. (2021). Specialty Photonic Crystal Fibers and Their Applications. Crystals, 11 (7), 739.10.3390/cryst11070739 Search in Google Scholar

15. Ahmad, P., Khandaker, M. U., Rehman, F., Muhammad, N., Faruque, M. R. I., Ullah, Z., ... & Bradley, D. A. (2021). Facile Synthesis of High-Quality Nano-size 10B-Enriched Fibers of Hexagonal Boron Nitride. Crystals, 11 (3), 222.10.3390/cryst11030222 Search in Google Scholar

16. Nathanael, A. J., & Oh, T. H. (2021). Encapsulation of Calcium Phosphates on Electrospun Nanofibers for Tissue Engineering Applications. Crystals, 11 (2), 199.10.3390/cryst11020199 Search in Google Scholar

17. Fu, J., Chen, Y., Huang, Z., Yu, F., Wu, D., Pan, J., ... & Leng, Y. (2021). Photoionization-Induced Broadband Dispersive Wave Generated in an AR-filled Hollow-Core Photonic Crystal Fiber. Crystals, 11 (2), 180.10.3390/cryst11020180 Search in Google Scholar

18. Itoh, T., Araki, T., Ashida, M., Iwata, T., Muro, K., & Yamada, N. (2011). Optical properties. In: Springer Handbook of Metrology and Testing (pp. 587–663). Springer, Berlin, Heidelberg. Search in Google Scholar

19. Shukla, P., & Kaur, K. P. (2013). Performance Analysis of EDFA for Different Pumping Configurations at High Data Rate. International Journal of Engineering and Advanced Technology (IJEAT), 2 (5), 487–490. Search in Google Scholar

20. Standard, F. (1996). 1037C: Telecommunications: Glossary of Telecommunication Terms. National Communication System. Technology and Standards Division. Washington, DC: General Services Administration. Information Technology Service. Search in Google Scholar

21. Chen, X., Xiao, Q. R., Jin, G. Y., Yan, P., & Gong, M. L. (2015). High Coupling Efficiency and Low Signal Light Loss (2+1)× 1 Coupler. Chinese Physics B, 24 (6), 064208.10.1088/1674-1056/24/6/064208 Search in Google Scholar

22. Xiao, Q. R., Yan, P., Yin, S., Hao, J., & Gong, M. (2010). 100 W Ytterbium-Doped Monolithic Fibre Laser with Fused Angle-Polished Side-Pumping Configuration. Laser Physics Letters, 8 (2), 125. Search in Google Scholar

23. Zhu, X., Schülzgen, A., Li, H., Li, L., Wang, Q., Suzuki, S., … & Peyghambarian, N. (2008). Single-Transverse-Mode Output from a Fibre Laser Based on Multimode Interference. Optics Letters, 33 (9), 908–910.10.1364/OL.33.00090818451935 Search in Google Scholar

24. Pachon, E. G., Franco, M. A., & Cordeiro, C. M. (2012). Spectral bandwidth analysis of high sensitivity refractive index sensor based on multimode interference fiber device. In: OFS2012 22nd International Conference on Optical Fiber Sensors (vol. 8421, p. 84217Q). International Society for Optics and Photonics. Search in Google Scholar

25. Miyazaki, K., Honda, M., Kudo, T., & Kawamura, T. (1975). Theoretical and experimental considerati ons of optical fibre connector. In: Optical Fibre Transmission (p. WA4). Optical Society of America. Search in Google Scholar

26. Tsuchiya, H., Nakagome, H., Shimizu, N., & Ohara, S. (1977). Double Eccentric Connectors for Optical Fibres. Applied Optics, 16 (5), 1323–1331.10.1364/AO.16.00132320168697 Search in Google Scholar

27. Knox, R. M., & Toulios, P. P. (1970). Integrated circuits for the millimeter through optical frequency range. In Proc. Symp. Submillimeter Waves (vol. 20, pp. 497–515). Brooklyn, NY. Search in Google Scholar

28. Burns, W. K., & Milton, A. (1975) Mode Conversion in Planar-Dielectric Separating Waveguides. IEEE Journal of Quantum Electronics, 11 (1), 32–39.10.1109/JQE.1975.1068511 Search in Google Scholar

29. Okamoto, K. (1990). Theoretical Investigation of Light Coupling Phenomena in Wavelength-Flattened Couplers. Journal of Lightwave Technology, 8 (5), 678–683.10.1109/50.54474 Search in Google Scholar

30. Shibayama, J., Yamauchi, J., & Nakano, H. (2003). Application of the finite-difference beam-propagation method to optical waveguide analysis. In: 17th International Conference on Applied Electromagnetics and Communications (pp. 262–265). 1–3 October 2003, Dubrovnik, Croatia, IEEE. Search in Google Scholar

31. Optiwave. (n.d.). Optiwave Photonic Software. Available at https://www.optiwave.com/ Search in Google Scholar

32. Pepper, D. W., & Heinrich, J. C. (2017). The Finite Element Method: Basic Concepts and Applications with MATLAB, MAPLE, and COMSOL. CRC press.10.1201/9781315395104 Search in Google Scholar

33. Deibel, J. A., Wang, K., Escarra, M. D., & Mittleman, D. M. (2006). Enhanced Coupling of Terahertz Radiation to Cylindrical Wire Waveguides. Optics Express, 14 (1), 279–290.10.1364/OPEX.14.00027919503341 Search in Google Scholar

34. Wen, J., Romanov, S., & Peschel, U. (2009). Excitation of Plasmonic Gap Waveguides by Nanoantennas. Optics Express, 17 (8), 5925–5932.10.1364/OE.17.00592519365411 Search in Google Scholar

35. Xu, P., Zheng, J., Doylend, J. K., & Majumdar, A. (2019). Low-Loss and Broadband Nonvolatile Phase-Change Directional Coupler Switches. Acs Photonics, 6 (2), 553–557.10.1021/acsphotonics.8b01628 Search in Google Scholar

36. Pidishety, S., Srinivasan, B., & Brambilla, G. (2016). All-Fiber Fused Coupler for Stable Generation of Radially and Azimuthally Polarized Beams. IEEE Photonics Technology Letters, 29 (1), 31–34. Search in Google Scholar

37. Chamanzar, M., Scopelliti, M. G., Bloch, J., Do, N., Huh, M., Seo, D., ... & Maharbiz, M. M. (2019). Ultrasonic Sculpting of Virtual Optical Waveguides in Tissue. Nature Communications, 10 (1), 1–10.10.1038/s41467-018-07856-w632702630626873 Search in Google Scholar

38. Zhang, Y., Zhu, W., Fan, P., He, Y., Zhuo, L., Che, Z., ... & Chen, Z. (2020). A Broadband and Low-Power Light-Control-Light Effect in a Fiber-Optic Nano-Optomechanical System. Nanoscale, 12 (17), 9800–9809.10.1039/C9NR10953F32328601 Search in Google Scholar

39. Comsol. (n.d.). Mach–Zehnder Modulator. Available at thttps://www.comsol.com/model/mach-8211-zehnder-modulator-5061 Search in Google Scholar

40. Ou, P., Yan, P., Gong, M., & Wei, W. (2004). Coupling Efficiency of Angle-Polished Method for Side-Pumping Technology. Optical Engineering, 43 (4), 816–821.10.1117/1.1666855 Search in Google Scholar

41. Xiao, Q., Chen, X., Ren, H., Yan, P., & Gong, M. (2013). Fibre Coupler for Mode Selection and High-Efficiency Pump Coupling. Optics Letters, 38 (7), 1170–1172.10.1364/OL.38.00117023546280 Search in Google Scholar

42. Fanlong, D., Xinhai, Z., & Feng, S. (2018). Side Coupler Applied in a Multi-Pumped Yb-Doped Triple-Clad Fibre Laser. Laser Physics, 28 (12), 125106.10.1088/1555-6611/aae185 Search in Google Scholar

43. Ou, P., Yan, P., Gong, M., Wei, W., & Yuan, Y. (2004). Studies of Pump Light Leakage out of Couplers for Multi-Coupler Side-Pumped Yb-doped Double-Clad Fibre Lasers. Optics Communications, 239 (4–6), 421–428.10.1016/j.optcom.2004.05.055 Search in Google Scholar

44. Mohammed, W. S., Mehta, A., & Johnson, E. G. (2004). Wavelength Tunable Fibre Lens Based on Multimode Interference. Journal of Lightwave Technology, 22 (2), 469.10.1109/JLT.2004.824379 Search in Google Scholar

45. Guzmán-Sepúlveda, J. R., Guzmán-Cabrera, R., & Castillo-Guzmán, A. A. (2021). Optical Sensing Using Fiber-Optic Multimode Interference Devices: A Review of Nonconventional Sensing Schemes. Sensors, 21 (5), 1862.10.3390/s21051862796211833800041 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo