Otwarty dostęp

The Effect of the Range of a Modulating Phase Mask on the Retrieval of a Complex Object from Intensity Measurements


Zacytuj

1. Shechtman, Y., Eldar, Y.C., Cohen, O., Chapman, H. N., Miao, J., & Segev, M. (2015). Phase Retrieval with Application to Optical Imaging. IEEE Signal Processing Magazine, 32 (3), 87–109. DOI: 10.1109/MSP.2014.235267310.1109/MSP.2014.2352673 Search in Google Scholar

2. Zuo, C., Li, J., Sun, J., Fan, Y., Zhang, J., Lu, L., ... & Chen, Q. (2020). Transport of Intensity Equation: A Tutorial. Optics and Lasers in Engineering, 135, 106187. DOI: 10.1016/j.optlaseng.2020.10618710.1016/j.optlaseng.2020.106187 Search in Google Scholar

3. Tao, S., He. C., Hao, X., Kuang, C., & Liu, X. (2021). Principles of Different X-ray Phase-Contrast Imaging: A Review. Applied Sciences (Switzerland), 11 (7), 2971. DOI: 10.3390/app1107297110.3390/app11072971 Search in Google Scholar

4. Gerchberg, R. W., & Saxton, W.O. (1972). Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures. Optik (Stuttgart), 35 (2), 237–250. Search in Google Scholar

5. Fienup, J. R. (1982). Phase Retrieval Algorithms: A Comparison. Applied Optics, 21 (15), 2758–2768. DOI: 10.1364/AO.21.00275810.1364/AO.21.00275820396114 Search in Google Scholar

6. Latychevskaia, T. (2018). Iterative Phase Retrieval in Coherent Diffractive Imaging: Practical Issues. Applied Optics, 57 (25), 7187–7197. DOI: 10.1364/AO.57.00718710.1364/AO.57.00718730182978 Search in Google Scholar

7. Huang, L., Zuo, C., Idir, M., Qu, W., & Asundi, A. (2015). Phase retrieval in arbitrarily shaped aperture with the transport-of-intensity equation. In SPIE/ IS&T Electronic Imaging (94010B), 8–12 February 2015, San Francisco, California, United States: SPIE Digital Library. DOI: 10.1117/12.208775410.1117/12.2087754 Search in Google Scholar

8. Candès, E. J., Eldar, Y. C., Strohmer, T., & Voroninski, V. (2013). Phase Retrieval via Matrix Completion. SIAM Journal on Imaging Sciences, 6 (1), 199–225. DOI: 10.1137/11084807410.1137/110848074 Search in Google Scholar

9. Candès, E. J., Li, X., & Soltanolkotabi, M. (2015). Phase Retrieval from Coded Diffraction Patterns. Applied and Computational Harmonic Analysis, 39 (2), 277–299. DOI: 10.1016/j.acha.2014.09.00410.1016/j.acha.2014.09.004 Search in Google Scholar

10. Huang, W., Gallivan, K. A., & Zhang, X. (2017). Solving PhaseLift by Low-rank Riemannian Optimization Methods for Complex Semidefinite Constraints. SIAM Journal on Scientific Computing, 39 (5), B840–B859. DOI: 10.1137/16M107283810.1137/16M1072838 Search in Google Scholar

11. Waldspurger, I., d’Aspremont, A., & Mallat, S. (2015) Phase Recovery, MaxCut and Complex Semidefinite Programming. Mathematical Programming, 149 (1–2), 47–81. DOI: 10.1007/s10107-013-0738-910.1007/s10107-013-0738-9 Search in Google Scholar

12. Katkovnik, V., & Egiazarian, K. (2017). Sparse Superresolution Phase Retrieval from Phase-coded Noisy Intensity Patterns. Optical Engineering, 56 (9), 094103. DOI: 10.1117/1.OE.56.9.09410310.1117/1.OE.56.9.094103 Search in Google Scholar

13. Shechtman, Y., Beck, A., & Eldar, Y. C. (2014). GESPAR: Efficient Phase Retrieval of Sparse Signals. IEEE Transactions on Signal Processing, 62 (4), 928–938. DOI: 10.1109/TSP.2013.229768710.1109/TSP.2013.2297687 Search in Google Scholar

14. Kumar Singh, R., Vinu, R. V., & Sharma M., A. (2014). Recovery of Complex Valued Objects from Two-point Intensity Correlation Measurement. Applied Physics Letters, 104 (11), 111108. DOI: 10.1063/1.486912310.1063/1.4869123 Search in Google Scholar

15. Knapp, J., Paulus, A., Komprobst, J., Siart, U., & Eibert, T. F. (2021). Multifrequency Phase Retrieval for Antenna Measurements. IEEE Transactions on Antennas and Propagation, 69 (1), 488-501. DOI: 10.1109/TAP.2020.300864810.1109/TAP.2020.3008648 Search in Google Scholar

16. Karitans, V., Nitiss, E., Tokmakovs, A., Ozolinsh, M., & Logina, S. (2019). Optical Phase Retrieval Using Four Rotated Versions of a Single Binary Amplitude Modulating Mask. Journal of Astronomical Telescopes, Instruments, and Systems, 5 (3), 039004. DOI: 10.1117/1.JATIS.5.3.03900410.1117/1.JATIS.5.3.039004 Search in Google Scholar

17. Burke, D., Devaney, N., Christof, J., & Hartung, M. (2010). Application of wavelength diversity for astronomical adaptive optics imaging. In SPIE Astronomical Telescopes + Instrumentation, (77365U), 27 June–2 July 2010, San Diego, California, United States: SPIE Digital Library. DOI: 10.1117/12.85695310.1117/12.856953 Search in Google Scholar

eISSN:
2255-8896
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Physics, Technical and Applied Physics