Zacytuj

1. Shluger, A. (2020). Defects in Oxides in Electronic Devices. Handbook of Materials Modeling: Applications: Current and Emerging Materials, 1013–1034.10.1007/978-3-319-44680-6_79Search in Google Scholar

2. Maier, J. (2003). Complex Oxides: High Temperature Defect Chemistry vs. Low Temperature Defect Chemistry. Physical Chemistry Chemical Physics, 5 (11), 2164–2173.10.1039/B300139NSearch in Google Scholar

3. Lee, D., Park, J. W., Cho, N. K., Lee, J., & Kim, Y. S. (2019). Verification of Charge Transfer in Metal-Insulator-Oxide Semiconductor Diodes via Defect Engineering of Insulator. Scientific Reports, 9 (1), 10323.10.1038/s41598-019-46752-1663548331312002Search in Google Scholar

4. Popov, A. I., Kotomin, E. A., & Maier, J. (2010). Basic Properties of the F-Type Centers in Halides, Oxides and Perovskites. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268 (19), 3084–3089.10.1016/j.nimb.2010.05.053Search in Google Scholar

5. Kozlovskiy, А., Kenzhina, I., Kaikanov, М., Stepanov, A., Shamanin, V., Zdorovets, М., & Tikhonov, А. (2018). Effect of Electronic Modification on Nanostructures Stability to Degradation. Materials Research Express, 5 (7), 075010.10.1088/2053-1591/aacfa4Search in Google Scholar

6. Rusevich, L. L., Kotomin, E. A., Zvejnieks, G., & Popov, A. I. (2020). Ab Initio Calculations of Structural, Electronic and Vibrational Properties of BaTiO3 and SrTiO3 Perovskite Crystals with Oxygen Vacancies. Low Temperature Physics, 46 (12), 1185–1195.10.1063/10.0002472Search in Google Scholar

7. Zhumatayeva, I. Z., Kenzhina, I. E., Kozlovskiy, A. L., & Zdorovets, M. V. (2020). The Study of the Prospects for the Use of Li0.15Sr0.85TiO3 Ceramics. Journal of Materials Science: Materials in Electronics, 31 (9), 6764–6772.Search in Google Scholar

8. Chornaja, S., Sproge, E., Dubencovs, K., Kulikova, L., Serga, V., Cvetkovs, A., & Kampars, V. (2014). Selective Oxidation of Glycerol to Glyceraldehyde over Novel Monometallic Platinum Catalysts. Key Engineering Materials, 604, 138–141.10.4028/www.scientific.net/KEM.604.138Search in Google Scholar

9. Eglitis, R., Popov, A. I., Purans, J., & Jia, R. (2020). First Principles Hybrid Hartree-Fock-DFT Calculations of Bulk and (001) Surface F Centers in Oxide Perovskites and Alkaline-Earth Fluorides. Low Temperature Physics, 46 (12), 1206–1212.10.1063/10.0002475Search in Google Scholar

10. Pearton, S. J., Yang, J., Cary IV, P. H., Ren, F., Kim, J., Tadjer, M. J., & Mastro, M. A. (2018). A Review of Ga2O3 Materials, Processing, and Devices. Applied Physics Reviews, 5 (1), 011301.10.1063/1.5006941Search in Google Scholar

11. Higashiwaki, M., Sasaki, K., Murakami, H., Kumagai, Y., Koukitu, A., Kuramata, A., ... & Yamakoshi, S. (2016). Recent Progress in Ga2O3 Power Devices. Semiconductor Science and Technology, 31 (3), 034001.10.1088/0268-1242/31/3/034001Search in Google Scholar

12. Luchechko, A., Vasyltsiv, V., Kostyk, L., Tsvetkova, O., & Popov, A. I. (2019). Shallow and Deep Trap Levels in X-Ray Irradiated β-Ga2O3: Mg. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 441, 12-17.10.1016/j.nimb.2018.12.045Search in Google Scholar

13. Drozdowski, W., Makowski, M., Witkowski, M. E., Wojtowicz, A. J., Schewski, R., Irmscher, K., & Galazka, Z. (2020). Semiconductor Scintillator Development: Pure and Doped β-Ga2O3. Optical Materials, 105, 109856.10.1016/j.optmat.2020.109856Search in Google Scholar

14. Zhao, M., Tong, R., Chen, X., Ma, T., Dai, J., Lian, J., & Ye, J. (2020). Ellipsometric Determination of Anisotropic Optical Constants of Single Phase Ga2O3 Thin Films in its Orthorhombic and Monoclinic Phases. Optical Materials, 102, 109807.10.1016/j.optmat.2020.109807Search in Google Scholar

15. Xu, C. X., Liu, H., Pan, X. H., & Ye, Z. Z. (2020). Growth and characterization of Si-doped β-Ga2O3 films by pulsed laser deposition. Optical Materials, 108, 110145.10.1016/j.optmat.2020.110145Search in Google Scholar

16. Feng, B., Li, Z., Cheng, F., Xu, L., Liu, T., Huang, Z., ... & Ding, S. (2020). Investigation of β-Ga2O3 Film Growth Mechanism on c-Plane Sapphire Substrate by Ozone Molecular Beam Epitaxy. Physica Status Solidi (a), 2000457. https://doi.org/10.1002/pssa.20200045710.1002/pssa.202000457Search in Google Scholar

17. Alhalaili, B., Bunk, R. J., Mao, H., Cansizoglu, H., Vidu, R., Woodall, J., & Islam, M. S. (2020). Gallium Oxide Nanowires for UV Detection with Enhanced Growth and Material Properties. Scientific Reports, 10, 21434. https://doi.org/10.1038/s41598-020-78326-x10.1038/s41598-020-78326-xSearch in Google Scholar

18. Yin, W. J., Wei, S. H., Al-Jassim, M. M., & Yan, Y. (2011). Prediction of the Chemical Trends of Oxygen Vacancy Levels in Binary Metal Oxides. Applied Physics Letters, 99 (14), 142109.10.1063/1.3647756Search in Google Scholar

19. Biswas, P., Ainabayev, A., Zhussupbekova, A., Jose, F., O’Connor, R., Kaisha, A., ... & Shvets, I. V. (2020). Tuning of Oxygen Vacancy-Induced Electrical Conductivity in Ti-Doped Hematite Films and its Impact on Photoelectrochemical Water Splitting. Scientific Reports, 10 (1), 7463. https://doi.org/10.1038/s41598-020-64231-w10.1038/s41598-020-64231-wSearch in Google Scholar

20. Zacherle, T., Schmidt, P. C., & Martin, M. (2013). Ab Initio Calculations on the Defect Structure of β-Ga2O3. Physical Review B, 87 (23), 235206.Search in Google Scholar

21. Beck, A. D. (1993). Density-Functional Thermochemistry. III. The Role of Exact Exchange. Journal of Chemical Physics, 98 (7), 5648–6.Search in Google Scholar

22. Pandey, R., Jaffe, J. E., & Harrison, N. M. (1994). Ab Initio Study of High Pressure Phase Transition in GaN. Journal of Physics and Chemistry of Solids, 55 (11), 1357–1361.10.1016/0022-3697(94)90221-6Search in Google Scholar

23. Towler, M. D., Allan, N. L., Harrison, N. M., Saunders, V. R., Mackrodt, W. C., & Apra, E. (1994). Ab Initio Study of MnO and NiO. Physical Review B, 50 (8), 5041.Search in Google Scholar

24. Monkhorst, H. J., & Pack, J. D. (1976). Special Points for Brillouin-Zone Integrations. Physical Review B, 13 (12), 5188.10.1103/PhysRevB.13.5188Search in Google Scholar

25. Mulliken, R. S. (1955). Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies. Journal of Chemical Physics, 23 (10), 1841–1846.10.1063/1.1740588Search in Google Scholar

26. Bailey, C. L., Liborio, L., Mallia, G., Tomić, S., & Harrison, N. M. (2010). Calculating Charged Defects Using CRYSTAL. Journal of Physics: Conference Series, 242 (1), 012004.Search in Google Scholar

27. Makov, G., & Payne, M. C. (1995). Periodic Boundary Conditions in Ab Initio Calculations. Physical Review B, 51 (7), 4014.Search in Google Scholar

28. Lany, S., & Zunger, A. (2008). Assessment of Correction Methods for the Band-Gap Problem and for Finite-Size Effects in Supercell Defect Calculations: Case Studies for ZnO and GaAs. Physical Review B, 78 (23), 235104.10.1103/PhysRevB.78.235104Search in Google Scholar

29. Scherz, U., & Scheffler, M. (1993). Density-Functional Theory of sp-Bonded Defects in III/V Semiconductors. Semiconductors and Semimetals, 38, 1–58.10.1016/S0080-8784(08)62797-0Search in Google Scholar

30. Varley, J. B., Weber, J. R., Janotti, A., & Van de Walle, C. G. (2010). Oxygen Vacancies and Donor Impurities in β-Ga2O3. Applied Physics Letters, 97 (14), 142106.10.1063/1.3499306Search in Google Scholar

31. King, P. D. C., McKenzie, I., & Veal, A. T. (2010). Observation of Shallow-Donor Muonium in Ga2O3: Evidence for Hydrogen-Induced Conductivity. Applied Physics Letters, 96 (6), 062110.10.1063/1.3309694Search in Google Scholar

32. King, P. D. C., & Veal, T. D. (2011). Conductivity in Transparent Oxide Semiconductors. Journal of Physics: Condensed Matter, 23 (33), 334214.Search in Google Scholar

eISSN:
0868-8257
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Physics, Technical and Applied Physics