Otwarty dostęp

The Effect of Electric Field Configuration on the Thermo-Chemical Conversion of Straw Pellets


Zacytuj

1. European Commission. (2019). 2030 Climate & Energy Framework. Available at: https://ec.europa.eu/clima/policies/strategies/2030_enSearch in Google Scholar

2. Roger, A.S. (2013). Comparative life cycle assessments: carbon neutrality and wood biomass energy. Resources for the Future DP13-11, Washington, 1–18. http://www.rff.org/RFF/Documents/RFF-DP-13-11.pdfSearch in Google Scholar

3. Vasilev, S., Baxter, D., Andersen, L.K., Vasileva, C.G., & Morgan, T.J. (2012). An Overview of the Organic and Inorganic Phase Composition of Biomass. Fuel, 94, 1–33. https://doi.org/10.1016/j.fuel.2011.09.03010.1016/j.fuel.2011.09.030Search in Google Scholar

4. Koppejan, J., & Cremers, M. (2019). Biomass Pre-Treatment for Bioenergy. Policy report published by IEA Bioenergy. Available at: https://www.ieabioenergy.com/wp-content/uploads/2019/04/Pretreatment_PolicyReport.pdfSearch in Google Scholar

5. Wang, L., Littlewood, J., & Murphy, R.J. (2013). Environmental Sustainability of Bioethanol Production from Wheat Straw in the UK. Renewable and Sustainable Energy Reviews, 28, 715–725. https://doi.org/10.1016/j.rser.2013.08.031, Available at:https://www.sciencedirect.com/science/article/pii/S136403211300571610.1016/j.rser.2013.08.031Search in Google Scholar

6. Barmina, I., Kolmičkovs, A, Valdmanis, R, Vostrikovs, S., & Zake, M. (2018). Thermo-chemical conversion of microwave activated biomass mixtures. JPCS-IOPMMP, Journal IOP Conf. Series: Materials Science and Engineering, doi:10.1088/1757-899X/355/1/012018, Available at: https://iopscience.iop.org/article/10.1088/1757-899X/355/1/01201810.1088/1757-899X/355/1/012018Search in Google Scholar

7. Barmina I., Valdmanis R., & Zake M. (2018). The Effects of Biomass Co-Gasification and Co-Firing on the Development of Combustion Dynamics. Energy, 146, 4–12. DOI: 10.1016/j.energy.2017.04.14010.1016/j.energy.2017.04.140Search in Google Scholar

8. Pedersen, L.S., Nielsen, H.P., Kiil, S., Hansen, L.A., Dam-Johansen, K., Kildsig, F., ... & Jespersen, P. (1996). Full-Scale Co-Firing of Straw and Coal. Fuel, 75, 1584-1590. https://doi.org/10.1016/0016-2361(96)82642-110.1016/0016-2361(96)82642-1Search in Google Scholar

9. Houshfar, E., Løvås, T., & Skreiberg, Ø (2012). Experimental Investigation on NOx Reduction by Primary Measures in Biomass Combustion: Straw, Peat, Sewage Sludge, Forest Residues and Wood Pellets. Energies, 5, 270–290; doi:10.3390/en5020270.10.3390/en5020270Search in Google Scholar

10. Lawton, J., & Weinberg, F. (1969). Electrical aspects of combustion. Oxford, UK: Clarendon Press, ISBN 0198553412.Search in Google Scholar

11. Blades, A.T. (1976). Ion Formation in Hydrocarbon Flames. Can J Chem, 54 (18), 2919−2924, https://www.nrcresearchpress.com/doi/pdfplus/10.1139/v76-41310.1139/v76-413Search in Google Scholar

12. Chien, Y., & Dunn-Rankin, D. (2018). Electric Field Induced Changes of a Diffusion Flame and Heat Transfer near an Impinging Surface, Energies, 11, 1235; doi:10.3390/en11051235.10.3390/en11051235Search in Google Scholar

13. Ryu, S.K., Kim, Y.K., Kim, M.K., Won, S.H., & Chung, S.H. (2010). Observation of Multi-Scale Oscillation of Laminar Lifted Flames with Low-Frequency AC Electric Fields. Combust. Flame, 157, 25–32. https://doi.org/10.1016/j.combustflame.2009.10.001 Available at: https://www.sciencedirect.com/science/article/abs/pii/S001021800900279X10.1016/j.combustflame.2009.10.001Search in Google Scholar

14. Barmina, I., Kolmickovs, A., Valdmanis, R., Zake, M., Vostrikovs, S., Kalis, H., & Strautins, U. (2019). Electric Field Effect on the Thermal Decomposition and Co-combustion of Straw with Solid Fuel Pellets, Energies, 12, 1522; https://doi.org/10.3390/en1208152210.3390/en12081522Search in Google Scholar

15. Barmina, I., Purmalis, M., Valdmanis, R., & Zaķe, M. (2016). Electrodynamic Control of the Combustion Characteristics and Heat Energy Production. Combustion Science and Technology, 188 (2), 190–206, DOI: 10.1080/00102202.2015.1088010. URL: http://www.tandfonline.com/doi/full/10.1080/00102202.2015.108801010.1080/00102202.2015.1088010Search in Google Scholar

16. Colannino, J. (2013). Electrodynamic Combustion Control TM Technology, A ClearSign White Paper; ClearSign Combustion Cooperation: Seattle, WA, USA. Available at: http://www.ctgn.qc.ca/images/bulletins/bulletin_vol4no3/pdf/ind_ha_clearsign_01.pdfSearch in Google Scholar

17. Greene, S.A. (1963). A Literature Survey of Ions in Flames, Report No. TDR-169(S3153-01) TN-5, Ballistic Systems Division Air Force Systems Command, United States Air Force, California, 1–23.Search in Google Scholar

18. Yang, H., Yan, R., Chen, H, Lee, D.H, & Zheng, Ch. (2007). Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis, Fuel, 86, 1781–1799. https://doi.org/10.1016/j.fuel.2006.12.01310.1016/j.fuel.2006.12.013Search in Google Scholar

19. Barmina, I., Kolmickovs, A., Valdmanis, R., & Vostrikovs, S. (2019). Electrodynamic control of straw co-firing with propane. In Engineering for Rural Development conf, 22–24 May 2019 (pp. 1319–1324), Jelgava, Latvia: Latvia University of Life Sciences and Technologies. DOI: 10.22616/ERDev2019.18. N022.10.22616/ERDev2019.18Search in Google Scholar

eISSN:
0868-8257
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Physics, Technical and Applied Physics