Otwarty dostęp

Gas Combustion Efficiency Enhancement: Application Study of Intense Elestrostatic Field


Zacytuj

1. Davis, A., Mikelsons, K., Puikevica-Puikevska, I., Silantjeva, I., Zebergs, V., & Zeltins, N. (2007). The methods of analysis for raising the energy efficiency and the reduction of greenhouse gases. In: 27th USAEE/IAEE North American Conference: Developing & Delivering Affordable Energy in the 21st Century (pp. 24–25), USA, Houston, Texas, Book of extended abstracts.Search in Google Scholar

2. Zhang, Y., Wu, Y., Yang, H., Zhang, H., & Zhu, M. (2013). Effect of high-frequency alternating electric fields on the behaviour and nitric oxide emission of laminar non-premixed flames. Fuel, 109, 350–355, DOI: https://doi.org/10.1016/j.fuel.2012.12.08310.1016/j.fuel.2012.12.083Open DOISearch in Google Scholar

3. Ombrello, T., Won, S.H., Ju, Y., & Williams, S. (2010). Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3. Combustion and Flame, 157(10), 1906–1915, DOI: https://doi.org/10.1016/j.combustflame.2010.02.00510.1016/j.combustflame.2010.02.005Search in Google Scholar

4. Ombrello T., Won, S.H., Ju, Y., & Williams, S. (2010). Flame propagation enhancement by plasma excitation of oxygen. Part II: Effects of O2 (a1Δ g). Combustion and flame, 157(10), 1916–1928, DOI: https://doi.org/10.1016/j.combustflame.2010.02.00410.1016/j.combustflame.2010.02.004Search in Google Scholar

5. Sun, W., Uddi, M., Ombrello, T., Won, S.H., Carter, C., & Ju, Y. (2011). Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction. Proceedings of the Combustion Institute, 33(2), 3211–3218, DOI: https://doi.org/10.1016/j.proci.2010.06.14810.1016/j.proci.2010.06.148Open DOISearch in Google Scholar

6. Sun, W., Uddi, M., Won, S.H., Ombrello, T., Carter, C., Ju, Y. (2012). Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits. Combustion and Flame, 159(1), 221–229, DOI: https://doi.org/10.1016/j.combustflame.2011.07.00810.1016/j.combustflame.2011.07.008Open DOISearch in Google Scholar

7. Belhi, M., Domingo, P., & Vervisch, P. (2010). Direct numerical simulation of the effect of an electric field on flame stability. Combustion and Flame, 157(12), 2286–2297, DOI: https://doi.org/10.1016/j.combustflame.2010.07.00710.1016/j.combustflame.2010.07.007Open DOISearch in Google Scholar

8. Fialkov, A. B., Kalinich, K. Y., & Fialkov, B. S. (1992). Experimental determination of primary ions in flame. Twenty-fourth Symposium on Combustion/The Combustion Institute. Elsevier, 785–791, DOI: https://doi.org/10.1016/S0082-0784(06)80096-20Search in Google Scholar

9. Goodings, J. M., Bohme, D. K., & Ng, C. W. (1979). Detailed ion chemistry in methane oxygen flames. I. Positive ions. Combustion and Flame, 36, 27–43, DOI: https://doi.org/10.1016/0010-2180(79)90044-010.1016/0010-2180(79)90044-0Open DOISearch in Google Scholar

10. Goodings, J. M., Bohme, D. K., & Ng, C. W. (1979). Detailed ion chemistry in methane oxygen flames. II. Negative ions. Combustion and Flame, 36, 45–62, DOI: https://doi.org/10.1016/0010-2180(79)90045-210.1016/0010-2180(79)90045-2Search in Google Scholar

11. Bisetti, F., & El Morsli, M. (2012). Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames. Combustion and Flame, 159(12), 3518–3521, DOI: https://doi.org/10.1016/j.combustflame.2012.08.00210.1016/j.combustflame.2012.08.002Open DOISearch in Google Scholar

12. Hu, J., Rivin, B., & Sher, E. (2000). The effect of an electric field on the shape of co-flowing and candle-type methane-air flames. Experimental Thermal and Fluid Science, 21(1–3), 124–133, DOI: https://doi.org/10.1016/S0894-1777(99)00062-X10.1016/S0894-1777(99)00062-XOpen DOISearch in Google Scholar

13. Barmina, I., Purmalis, M., Valdmanis, R., & Zaķe, M. (2016). Electrodynamic control of the combustion characteristics and heat energy production. Combustion Science and Technology, 188(2), 190–206.10.1080/00102202.2015.1088010Search in Google Scholar

14. Krickis, O. (2017). Effect of electric field in the stabilized premixed flame on combustion process emissions. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, 251, 1–5, DOI: https://doi.org/10.1088/1757-899X/251/1/01211610.1088/1757-899X/251/1/012116Open DOISearch in Google Scholar

15. Gan, Y., Luo, Y., Wang, M., Shi, Y., & Yan, Y. (2015). Effect of alternating electric fields on the behaviour of small-scale laminar diffusion flames. Applied Thermal Engineering, 89, 306–315, DOI: https://doi.org/10.1016/j.applthermaleng.2015.06.04110.1016/j.applthermaleng.2015.06.041Open DOISearch in Google Scholar

16. Belhi, M., Domingo, P., & Vervisch, P. (2009). Effect of electric field on flame stability. Proc. of the European Combustion Meeting, 1, 1–6.Search in Google Scholar

eISSN:
0868-8257
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Physics, Technical and Applied Physics