Otwarty dostęp

AB Initio Calculations of CUN@Graphene (0001) Nanostructures for Electrocatalytic Applications


Zacytuj

1. Kuhl, K. P., Cave, E. R., Abram, D. N., & Jaramillo, T. F. (2012). New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci., 5, 7050–7059.10.1039/c2ee21234jSearch in Google Scholar

2. Zhang, Y.-J., Sethuraman, V., Michalsky, R., & Pereson, A. A. (2014). Competition between CO reduction and H evolution on transition-metal electrocatalysts. ACS Catal., 4, 3742–3748.10.1021/cs5012298Search in Google Scholar

3. Reske, R., Mistry, H., Behafarid, F., Cuenya, B. R., Strasser, P. (2014). Particle size effects in the catalytic electroreduction of CO on Cu nanoparticles. J. Am. Chem. Soc., 136, 6978–6986.10.1021/ja500328k24746172Search in Google Scholar

4. Zhu, W. Zhang, Y.-J., Zhang, H., Lv, H., Li, Q., Michalsky, R., Peterson, A. A., & Sun, S. (2014). Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc., 136, 16132–16135.10.1021/ja509509925380393Search in Google Scholar

5. Mistry, H., Varela, A. S., Kuehl, S., Strasser, P., & Cuenya, B. R. (2016). Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater., 1, 16009.10.1038/natrevmats.2016.9Search in Google Scholar

6. Ren, D., Deng, Y., Handoko, A. D., Chen, C. S., Malkhandi, S., & Yeo, B. S. (2015). Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (I) oxide catalysts. ACS Catal., 5, 2814–2821.10.1021/cs502128qSearch in Google Scholar

7. Mistry, H., Varela A. S., Bonifacio C. S., Zegkinoglou,I., Sinev, I., Choi, Y.-W., … Cuenya, B. R. (2016). Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun., 7, 12123.10.1038/ncomms12123493149727356485Search in Google Scholar

8. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car., R., Cavazzoni, C., … Wentzcovitch, M. (2017). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matt., 29, 465901.Search in Google Scholar

9. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865–3868.10.1103/PhysRevLett.77.386510062328Search in Google Scholar

10. Kresse, G. J., & Jouber, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758–1775.10.1103/PhysRevB.59.1758Search in Google Scholar

11. Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Phys. Rev. B, 13, 5188–5192.10.1103/PhysRevB.13.5188Search in Google Scholar

12. Otani, M., & Sugino, O. (2006). First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach. Phys. Rev. B, 73, 115407.10.1103/PhysRevB.73.115407Search in Google Scholar

eISSN:
0868-8257
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Fizyka, Fizyka techniczna i stosowana