Otwarty dostęp

First-Principles Calculations of Oxygen Diffusion in Ti-Al Alloys


Zacytuj

1. Berdovsky, Y.N. (2008). Intermetallics Research Progress. New York: Nova Science.Search in Google Scholar

2. Polmear, I. (2006). Light Alloys: From Traditional Alloys to Nanocrystals. Amsterdam: Butterworth-Heinemann.Search in Google Scholar

3. Rahmel, A., & Spencer, P.J. (1991). Thermodynamic aspects of TiAl and TiSi2 oxidation: The Al–Ti–O and Si–Ti–O phase diagrams. Oxid. Met. 35(1/2), 53–68.10.1007/BF00666500Search in Google Scholar

4. Kofstad, P. (1988). High Temperature Corrosion. London: Elsevier Applied Science.Search in Google Scholar

5. Maurice, V., Despert, G., Zanna S., Josso, P., Bacos M.-P., & Marcus. P. (2007). XPS study of the initial stages of oxidation of α2-Ti3Al and γ-TiAl intermetallic alloys. Acta Mater., 55, 3315–3325. DOI: 10.1016/j.actamat.2007.01.03010.1016/j.actamat.2007.01.030Open DOISearch in Google Scholar

6. Umakoshi, Y., Yamaguchi, M., Sakagami, T., & Yamane, T. (1989). Oxidation resistance of intermetallic compounds Al3Ti and TiAl. J. Mater. Sci., 24, 1599–1603.10.1007/BF01105677Search in Google Scholar

7. Smialek, J.L., & Humphrey, D.L. (1992). Oxidation kinetics of cast TiAl3. Scripta Metall. Mater., 26, 1763–1768.10.1016/0956-716X(92)90549-TSearch in Google Scholar

8. Okafor, I.C.I., & Reddy, R.G. (1999). The oxidation behavior of high-temperature aluminides. JOM, 51(6), 35–40.10.1007/s11837-999-0092-9Search in Google Scholar

9. Becker, S., Schutze, M., & Rahmel, A. (1993). Cyclic-oxidation behavior of TiAI and of TiAI alloys. Oxid. Met., 39(1/2), 93–106.10.1007/BF00666612Search in Google Scholar

10. Wang, J., Kong, L., Li, T., & Hiong, T. (2016). High temperature oxidation behavior of Ti(Al,Si)3 diffusion coating on γ-TiAl by cold spray. Trans. Nonferrous Met. Soc. China, 26, 1155–1162. DOI: 10.1016/S1003-6326(16)64214-010.1016/S1003-6326(16)64214-0Search in Google Scholar

11. Blöchl, P.E. (1994). Projector augmented-wave method. Phys. Rev. B., 50(24), 17953–17979. DOI: 10.1103/PhysRevB.50.1795310.1103/PhysRevB.50.179539976227Open DOISearch in Google Scholar

12. Kresse, G., & Joubert, J. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B., 59(3), 1758–1775. DOI: 10.1103/PhysRevB.59.175810.1103/PhysRevB.59.1758Open DOISearch in Google Scholar

13. Kresse, G., & Hafner, J. (1993). Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B., 48, 13115–13118. DOI: 10.1103/PhysRevB.48.1311510.1103/PhysRevB.48.13115Open DOISearch in Google Scholar

14. Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6, 15–50. DOI: 10.1016/0927-0256(96)00008-010.1016/0927-0256(96)00008-0Open DOISearch in Google Scholar

15. Perdew, J.P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18) 3865–3868. DOI: 10.1103/PhysRevLett.77.386510.1103/PhysRevLett.77.3865Open DOISearch in Google Scholar

16. Henkelman, G., Uberuaga, B.P., & Jónsson, H. (2000). A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys., 113(22), 9901–9904. DOI: 10.1063/1.132967210.1063/1.1329672Open DOISearch in Google Scholar

17. Wei, Y., Zhou, H.B., Zhang, Y., Lu, G.-H., & Xu, H. (2011). Effects of O in a binary-phase TiAl–Ti3Al alloy: From site occupancy to interfacial energetics. J. Phys.: Condens. Matter., 23(22), 225504. DOI: 10.1088/0953-8984/23/22/22550410.1088/0953-8984/23/22/225504Search in Google Scholar

18. Bakulin, A.V., Kulkova, S.E., Hu, Q.M., & Yang, R. (2015). Theoretical study of oxygen sorption and diffusion in the volume and on the surface of a γ-TiAl alloy. J. Exp. Theor. Phys., 120(2), 257–267. DOI: 10.1134/S106377611502009010.1134/S1063776115020090Open DOISearch in Google Scholar

19. Shanabarger, M.R. (1998). Comparative study of the initial oxidation behavior of a series of titanium–aluminum alloys. Appl. Surf. Sci., 134(1–4), 179–186. DOI: 10.1016/S0169-4332(98)00196-210.1016/S0169-4332(98)00196-2Open DOISearch in Google Scholar

20. Latyshev, A.M., Bakulin, A.V., Kulkova, S.E., Hu, Q.M., & Yang, R. (2016). Adsorption of oxygen on low-index surfaces of the TiAl3 alloy. J. Exp. Theor. Phys., 123(6), 991–1007. DOI: 10.1134/S106377611611013310.1134/S1063776116110133Search in Google Scholar

21. Koizumi, Y., Kishimoto, M., Minamino, Y., & Nakajima, H. (2008). Oxygen diffusion in Ti3Al single crystals. Philos. Mag., 88(24), 2991–3010. DOI: 10.1080/1478643080241913510.1080/14786430802419135Open DOISearch in Google Scholar

22. Bakulin, A.V., Latyshev, A.M., & Kulkova, S.E. (2017). Absorption and diffusion of oxygen in the Ti3Al alloy. J. Exp. Theor. Phys., 125(1), 138–147. DOI: 10.1134/S106377611707001910.1134/S1063776117070019Open DOISearch in Google Scholar

23. Bertin, Y.A., Parisot, J., & Gacougnolle, J.L. (1980). Modèle atomique de diffusion de l’oxygène dans le titane α*. J. Less-Common Met., 69, 121–138.10.1016/0022-5088(80)90049-1Search in Google Scholar

eISSN:
0868-8257
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Physics, Technical and Applied Physics