Zacytuj

[1] Momcilovic, V.V. (2009). Small light urban vehicles: A solution for increasing energy efficiency and decreasing CO2 emissions within city limits. WIT Transactions on the Built Environment. DOI: 10.2495/UT090431.10.2495/UT090431 Search in Google Scholar

[2] Gamayunova, O. (2019). Potential of energy saving on transport. Innovative Technologies in Environmental Science and Education. DOI: 10.1051/e3sconf/201913502025.10.1051/e3sconf/201913502025 Search in Google Scholar

[3] Marczak, H. (2017). Evaluation of ecological efficiency resulting from the application of modern buses in urban communications. Journal of Ecological Engineering, 18(5), 110-117. DOI: 10.12911/22998993/74944.10.12911/22998993/74944 Search in Google Scholar

[4] Macián, V., Tormos, B., Ramírez, L., Pérez, T. & Martínez, J. (2015). CO2 emissions reduction by using low viscosity oils in public urban bus fleets. Paper presented at the WIT Transactions on the Built Environment, 146, 255-266. DOI: 10.2495/UT150201.10.2495/UT150201 Search in Google Scholar

[5] Oprešnik, S.R., Seljak, T., Vihar, R., Gerbec, M. & Katrašnik, T. (2018). Real-world fuel consumption, fuel cost and exhaust emissions of different bus powertrain technologies. Energies, 11(8). DOI: 10.3390/en11082160.10.3390/en11082160 Search in Google Scholar

[6] Tica, S., Živanović, P., Bajčetić, S., Milovanović, B. & Nađ, A. (2019). Study of the fuel efficiency and ecological aspects of CNG buses in urban public transport in Belgrade. Journal of Applied Engineering Science, 17(1), 65-73. DOI: 10.5937/jaes17-17035.10.5937/jaes16-17035 Search in Google Scholar

[7] Keramydas, C., Papadopoulos, G., Ntziachristos, L., Wong, H.A. & Wong, C.K. (2018). Real-world measurement of hybrid buses fuel consumption and pollutant emissions in a metropolitan urban road network. Energies, 11(10). DOI: 10.3390/en11102569.10.3390/en11102569 Search in Google Scholar

[8] Zheng, Y., Li, S. & Xu, S. (2019). Transport oil product consumption and GHG emission reduction potential in China: An electric vehicle-based scenario analysis. PLoS ONE, 14(9). DOI: 10.1371/journal.pone.0222448.g007.10.1371/journal.pone.0222448.g007 Search in Google Scholar

[9] Tang, B.J., Li, X., Yu, B. & Wei, Y. (2019). Sustainable development pathway for intercity passenger transport: A case study of China. Applied Energy, 250-254. DOI: 10.1016/j.apenergy.2019.113632.10.1016/j.apenergy.2019.113632 Search in Google Scholar

[10] Coloma, J.F., Garcia, M., Boggio-Marzet, A. & Monzón, A. (2020). Developing eco-driving strategies considering city characteristics. Journal of Advanced Transportation. DOI: 10.1155/2020/2083074.10.1155/2020/2083074 Search in Google Scholar

[11] Zuccari, F., Orecchini, F., Santiangeli, A., Suppa, T., Ortenzi, F., Genovese, A. & Pede, G. (2019). Well to wheel analysis and comparison between conventional, hybrid and electric powertrain in real conditions of use. Paper presented at the AIP Conference Proceedings. DOI: 10.1063/1.5138891.10.1063/1.5138891 Search in Google Scholar

[12] Jereb, B., Kumperšcak, S. & Bratina, T. (2018). The impact of traffic flow on fuel consumption increase in the urban environment. FME Transactions. DOI:10.5937/FMET1802278J.10.5937/fmet1802278J Search in Google Scholar

[13] Chocholac, J., Hyrslova, J., Kucera, T., Machalik, S. & Hruska, R. (2019). Freight transport emissions calculators as a tool of sustainable logistic planning. Communications - Scientific Letters of the University of Zilina, 21. DOI: 10.26552/com.C.2019.4.43-50.10.26552/com.C.2019.4.43-50 Search in Google Scholar

[14] Skrucany, T., Kendra, M., Skorupa, M., Grencik, J. & Figlus, T. (2017). Comparison of Chosen Environmental Aspects in Individual Road Transport and Railway Passenger Transport. In Proceedings of the Procedia Engineering, 192. DOI: 10.1016/j.proeng.2017.06.139.10.1016/j.proeng.2017.06.139 Search in Google Scholar

[15] Vojtisek-Lom, M., Jirků, J. & Pechout, M. (2020). Real-world exhaust emissions of diesel locomotives and motorized railcars during scheduled passenger train runs on czech railroads. Atmosphere, 11. DOI: 10.3390/atmos11060582.10.3390/atmos11060582 Search in Google Scholar

[16] de Andrade, C.E.S. & D’Agosto, M.A. (2019). Evaluation of subway systems in CO2 emissions: Comparative analysis of emissions from cars, buses and subways. [Avaliação dos sistemas metroviários nas emissões de CO2: Análise comparativa das emissões por automóveis, ônibus e metrôs] Engenharia Sanitaria e Ambienta. vol.24, n.5, pp.919-927. ISSN 1809-4457.10.1590/s1413-41522019139710 Search in Google Scholar

[17] Skrucany, T., Kendra, M., Skorupa, M., Grencik, J. & Figlus, T. (2017). Comparison of Chosen Environmental Aspects in Individual Road Transport and Railway Passenger Transport. In Proceedings of the Procedia Engineering, 192. DOI: 10.1016/j.proeng.2017.06.139.10.1016/j.proeng.2017.06.139 Search in Google Scholar

[18] Konečný, V., Petro, F., Berežný, R. & Mikušová, M. (2017). Research on Selected Positive Externalities in Road Transport. LOGI – Scientific Journal on Transport and Logistics. DOI: 10.1515/logi-2017-0008.10.1515/logi-2017-0008 Search in Google Scholar

eISSN:
2336-3037
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Business and Economics, Business Management, Industries, Transportation, Logistics, Air Traffic, Shipping