Otwarty dostęp

Corrosion in underground infrastructures

   | 05 paź 2021

Zacytuj

1. Norsworthy, R., Understanding corrosion in underground pipelines: basic principles. In Underground Pipeline Corrosion, Elsevier: 2014; pp 3-34.10.1533/9780857099266.1.3 Search in Google Scholar

2. Khosravi, A.; Syri, S.; Zhao, X.; Assad, M. E. H., An artificial intelligence approach for thermodynamic modeling of geothermal based-organic Rankine cycle equipped with solar system. Geothermics 2019, 80, 138-154. Search in Google Scholar

3. Kennedy, M. W.; Akhtar, S.; Bakken, J. A.; Aune, R. E. In Analytical and experimental validation of electromagnetic simulations using COMSOL®, re inductance, induction heating and magnetic fields, COMSOL Users Conference, Stuttgart Germany, 2011; pp 1-9. Search in Google Scholar

4. Escalante, E., Concepts of underground corrosion. In Effects of Soil Characteristics on Corrosion, ASTM International: 1989. Search in Google Scholar

5. Kim, C.-H.; Weston, R. H.; Hodgson, A.; Lee, K.-H., The complementary use of IDEF and UML modelling approaches. Computers in industry 2003, 50 (1), 35-56.10.1016/S0166-3615(02)00145-8 Search in Google Scholar

6. Zhang, X.; He, W.; Zhang, Y.; Pandey, M. D., An effective approach for probabilistic lifetime modelling based on the principle of maximum entropy with fractional moments. Applied Mathematical Modelling 2017, 51, 626-642. Search in Google Scholar

7. Petersen, R.; Melchers, R., Long-term corrosion of cast iron cement lined pipes. Corrosion and Prevention 2012, 23 (10). Search in Google Scholar

8. Selwyn, L.; McKinnon, W.; Argyropoulos, V., Models for chloride ion diffusion in archaeological iron. Studies in conservation 2001, 46 (2), 109-120.10.1080/00393630.2001.12071698 Search in Google Scholar

9. Tomashov, N. D.; Chernova, G. P., Passivation of Metals by Contact with Cathodes. In Passivity and Protection of Metals Against Corrosion, Springer: 1967; pp 151-179.10.1007/978-1-4684-1728-9_6 Search in Google Scholar

10. Rathnayaka, S.; Shannon, B.; Zhang, C.; Kodikara, J., Introduction of the leak-before-break (LBB) concept for cast iron water pipes on the basis of laboratory experiments. Urban Water Journal 2017, 14 (8), 820-828.10.1080/1573062X.2016.1274768 Search in Google Scholar

11. Andrade, C.; Sanchez, J.; Fullea, J.; Rebolledo, N.; Tavares, F., On-site corrosion rate measurements: 3D simulation and representative values. Materials and Corrosion 2012, 63 (12), 1154-1164.10.1002/maco.201206775 Search in Google Scholar

12. Kranc, S.; Sagüés, A. A., Computation of reinforcing steel corrosion distribution in concrete marine bridge substructures. Corrosion 1994, 50 (1), 50-61.10.5006/1.3293494 Search in Google Scholar

13. Schwerdtfeger, W., Soil resistivity as related to underground corrosion and cathodic protection. Highway Research Record 1966, (110). Search in Google Scholar

14. Mughabghab, S.; Sullivan, T., Evaluation of the pitting corrosion of carbon steels and other ferrous metals in soil systems. Waste management 1989, 9 (4), 239-251.10.1016/0956-053X(89)90408-X Search in Google Scholar

15. Wakelin, R. G.; Gummow, R. A., A Summary of the Findings of Recent Watermain Corrosion Studies in Ontario. In Materials Performance Maintenance, Elsevier: 1991; pp 159-175.10.1016/B978-0-08-041441-6.50018-7 Search in Google Scholar

16. Deo, R. N.; Birbilis, N.; Cull, J. P., Measurement of corrosion in soil using the galvanostatic pulse technique. Corrosion science 2014, 80, 339-349. Search in Google Scholar

17. Deo, R. N.; Cull, J. P., Spectral induced polarization techniques in soil corrosivity assessments. Geotechnical Testing Journal 2015, 38 (6), 965-977.10.1520/GTJ20140219 Search in Google Scholar

18. Mualem, Y.; Friedman, S., Theoretical prediction of electrical conductivity in saturated and unsaturated soil. Water Resources Research 1991, 27 (10), 2771-2777.10.1029/91WR01095 Search in Google Scholar

19. Rhoades, J.; Raats, P.; Prather, R., Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity. Soil Science Society of America Journal 1976, 40 (5), 651-655.10.2136/sssaj1976.03615995004000050017x Search in Google Scholar

20. Millington, R.; Quirk, J., Permeability of porous solids. Transactions of the Faraday Society 1961, 57, 1200-1207. Search in Google Scholar

21. Aachib, M.; Mbonimpa, M.; Aubertin, M., Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers. Water, air, and soil pollution 2004, 156 (1), 163-193.10.1023/B:WATE.0000036803.84061.e5 Search in Google Scholar

22. Dang, D. N.; Lanarde, L.; Jeannin, M.; Sabot, R.; Refait, P., Influence of soil moisture on the residual corrosion rates of buried carbon steel structures under cathodic protection. Electrochimica Acta 2015, 176, 1410-1419. Search in Google Scholar

23. Akkouche, R.; Rémazeilles, C.; Jeannin, M.; Barbalat, M.; Sabot, R.; Refait, P., Influence of soil moisture on the corrosion processes of carbon steel in artificial soil: Active area and differential aeration cells. Electrochimica Acta 2016, 213, 698-708. Search in Google Scholar

24. Chang, Y.-C.; Woollam, R.; Orazem, M. E., Mathematical models for under-deposit corrosion: I. Aerated Media. Journal of The Electrochemical Society 2014, 161 (6), C321.10.1149/2.034406jes Search in Google Scholar

25. Kim, B. S.; Kang, B. G.; Choi, S. H.; Kim, T. G., Data modeling versus simulation modeling in the big data era: case study of a greenhouse control system. Simulation 2017, 93 (7), 579-594.10.1177/0037549717692866 Search in Google Scholar

26. Gardiner, C.; Melchers, R., Corrosion of mild steel by coal and iron ore. Corrosion science 2002, 44 (12), 2665-2673.10.1016/S0010-938X(02)00063-X Search in Google Scholar

27. Wilkinson, L., Systat. Wiley Interdisciplinary Reviews: Computational Statistics 2010, 2 (2), 256-257.10.1002/wics.66 Search in Google Scholar

28. Malki, B.; Baroux, B., Computer simulation of the corrosion pit growth. Corrosion Science 2005, 47 (1), 171-182.10.1016/j.corsci.2004.05.004 Search in Google Scholar

29. Johnson Jr, A. Lessons in metal durability from the ancient metals; 1989. Search in Google Scholar

30. Romanoff, M., Underground corrosion. US Government Printing Office: 1957; Vol. 579. Search in Google Scholar

31. Rajani, B., Investigation of grey cast iron water mains to develop a methodology for estimating service life. American Water Works Association: 2000. Search in Google Scholar

32. Doyle, G.; Seica, M. V.; Grabinsky, M. W., The role of soil in the external corrosion of cast iron water mains in Toronto, Canada. Canadian geotechnical journal 2003, 40 (2), 225-236.10.1139/t02-106 Search in Google Scholar

33. Kashani, M. M.; Crewe, A. J.; Alexander, N. A., Use of a 3D optical measurement technique for stochastic corrosion pattern analysis of reinforcing bars subjected to accelerated corrosion. Corrosion Science 2013, 73, 208-221. Search in Google Scholar

34. Fernandez, I.; Bairán, J. M.; Marí, A. R., 3D FEM model development from 3D optical measurement technique applied to corroded steel bars. Construction and Building Materials 2016, 124, 519-532. Search in Google Scholar

35. Deo, R.; Azoor, R.; Kodikara, J. In Proof of concept using numerical simulations for pipe corrosion inferences using ground penetrating radar, 2017 9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), IEEE: 2017; pp 1-5.10.1109/IWAGPR.2017.7996092 Search in Google Scholar

36. Ashley, G.; Burstein, G., Initial stages of the anodic oxidation of iron in chloride solutions. Corrosion 1991, 47 (12), 908-916.10.5006/1.3585204 Search in Google Scholar

37. Nicol, M. J.; Zhang, S., Anodic oxidation of iron (II) and copper (I) on various sulfide minerals in chloride solutions. Hydrometallurgy 2016, 166, 167-173. Search in Google Scholar

38. Sasson, M. B.; Calmano, W.; Adin, A., Iron-oxidation processes in an electroflocculation (electrocoagulation) cell. Journal of Hazardous Materials 2009, 171 (1-3), 704-709.10.1016/j.jhazmat.2009.06.057 Search in Google Scholar

39. Laforce, B.; Fiers, G.; Vandendriessche, H.; Crombé, P.; Cnudde, V.; Vincze, L., Monte Carlo simulation aided quantitative laboratory X-ray fluorescence analysis and its application in provenancing studies for geo-archeological samples. Analytical Chemistry 2021, 93 (8), 3898-3904.10.1021/acs.analchem.0c04583 Search in Google Scholar

40. Lai, C.; Xie, M.; Murthy, D., Ch. 3. bathtub-shaped failure rate life distributions. Handbook of statistics 2001, 20, 69-104. Search in Google Scholar

41. Venzlaff, H.; Enning, D.; Srinivasan, J.; Mayrhofer, K. J.; Hassel, A. W.; Widdel, F.; Stratmann, M., Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corrosion Science 2013, 66, 88-96. Search in Google Scholar

42. Aldenderfer, M. S., Computer simulation for archaeology: an introductory essay. Simulations in archaeology 1981, 67-118. Search in Google Scholar

43. Huet, B.; L’hostis, V.; Santarini, G.; Feron, D.; Idrissi, H., Steel corrosion in concrete: Determinist modeling of cathodic reaction as a function of water saturation degree. Corrosion science 2007, 49 (4), 1918-1932.10.1016/j.corsci.2006.10.005 Search in Google Scholar

44. Khaled, K.; Hackerman, N., Investigation of the inhibitive effect of ortho-substituted anilines on corrosion of iron in 1 M HCl solutions. Electrochimica Acta 2003, 48 (19), 2715-2723.10.1016/S0013-4686(03)00318-9 Search in Google Scholar

45. Zerfaoui, M.; Oudda, H.; Hammouti, B.; Kertit, S.; Benkaddour, M., Inhibition of corrosion of iron in citric acid media by aminoacids. Progress in Organic Coatings 2004, 51 (2), 134-138.10.1016/j.porgcoat.2004.05.005 Search in Google Scholar

46. Dussubieux, L.; Deraisme, A.; Frot, G.; Stevenson, C.; Creech, A.; Bienvenu, Y., La–ICP–ms, SEM–eds and EPMA analysis of eastern north american copper-based artefacts: impact of corrosion and heterogeneity on the reliability of the la–icp–ms compositional results. Archaeometry 2008, 50 (4), 643-657.10.1111/j.1475-4754.2007.00367.x Search in Google Scholar

47. Dillmann, P.; Neff, D.; Féron, D., Archaeological analogues and corrosion prediction: from past to future. A review. Corrosion engineering, science and technology 2014, 49 (6), 567-576.10.1179/1743278214Y.0000000214 Search in Google Scholar

48. Libourel, G.; Verney-Carron, A.; Morlok, A.; Gin, S.; Sterpenich, J.; Michelin, A.; Neff, D.; Dillmann, P., The use of natural and archeological analogues for understanding the long-term behavior of nuclear glasses. Comptes Rendus Geoscience 2011, 343 (2-3), 237-245.10.1016/j.crte.2010.12.004 Search in Google Scholar

49. Azoor, R.; Deo, R. N.; Birbilis, N.; Kodikara, J., On the optimum soil moisture for underground corrosion in different soil types. Corrosion Science 2019, 159, 108116.10.1016/j.corsci.2019.108116 Search in Google Scholar

50. El-Shamy, A.; Shehata, M.; Ismail, A., Effect of moisture contents of bentonitic clay on the corrosion behavior of steel pipelines. Applied Clay Science 2015, 114, 461-466. Search in Google Scholar

51. Rabus, B.; Wehn, H.; Nolan, M., The importance of soil moisture and soil structure for InSAR phase and backscatter, as determined by FDTD modeling. IEEE transactions on geoscience and remote sensing 2010, 48 (5), 2421-2429.10.1109/TGRS.2009.2039353 Search in Google Scholar

52. Kodešová, R.; Vignozzi, N.; Rohošková, M.; Hájková, T.; Kočárek, M.; Pagliai, M.; Kozák, J.; Šimůnek, J., Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types. Journal of Contaminant Hydrology 2009, 104 (1-4), 107-125.10.1016/j.jconhyd.2008.10.00819062128 Search in Google Scholar

53. Ferreira, C. A. M.; Ponciano, J. A.; Vaitsman, D. S.; Pérez, D. V., Evaluation of the corrosivity of the soil through its chemical composition. Science of the total environment 2007, 388 (1-3), 250-255.10.1016/j.scitotenv.2007.07.06217850848 Search in Google Scholar

54. Rahnemaie, R., Ion adsorption modeling as a tool to characterize metal (hydr) oxide behavior in soil. Wageningen University and Research: 2005. Search in Google Scholar

55. Maocheng, Y.; Jin, X.; Libao, Y.; Tangqing, W.; Cheng, S.; Wei, K., EIS analysis on stress corrosion initiation of pipe- line steel under disbonded coating in near-neutral pH simulated soil electrolyte. Corrosion Science 2016, 110, 23-34. Search in Google Scholar

56. Neff, D.; Dillmann, P.; Bellot-Gurlet, L.; Beranger, G., Corrosion of iron archaeological artefacts in soil: characterisation of the corrosion system. Corrosion science 2005, 47 (2), 515-535.10.1016/j.corsci.2004.05.029 Search in Google Scholar

57. Cole, I. S.; Marney, D., The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soils. Corrosion science 2012, 56, 5-16.10.1016/j.corsci.2011.12.001 Search in Google Scholar

58. Neira, J.; Ortiz, M.; Morales, L.; Acevedo, E., Oxygen diffusion in soils: understanding the factors and processes needed for modeling. Chilean journal of agricultural research 2015, 75, 35-44. Search in Google Scholar

59. Nakhaie, D.; Kosari, A.; Mol, J.; Asselin, E., Corrosion resistance of hot-dip galvanized steel in simulated soil solution: A factorial design and pit chemistry study. Corrosion Science 2020, 164, 108310.10.1016/j.corsci.2019.108310 Search in Google Scholar

60. Schmitz, D.; Anlauf, R.; Rehrmann, P., Effect of air content on the oxygen diffusion coefficient of growing media. 2013.10.4236/ajps.2013.45118 Search in Google Scholar

61. Papachristodoulou, C.; Ioannides, K.; Spathis, S., The effect of moisture content on radon diffusion through soil: assessment in laboratory and field experiments. Health Physics 2007, 92 (3), 257-264.10.1097/01.HP.0000248147.46038.bc17293698 Search in Google Scholar

62. Zhou, D.; Wang, Z.; Li, C., Data requisites for transformer statistical lifetime modelling – Part I: Aging-related failures. IEEE transactions on power delivery 2013, 28 (3), 1750-1757.10.1109/TPWRD.2013.2264143 Search in Google Scholar

63. Partridge, G. P.; Lehman, D. M.; Huebner, R. S., Modeling the reduction of vapor phase emissions from surface soils due to soil matrix effects: porosity/tortuosity concepts. Journal of the Air & Waste Management Association 1999, 49 (4), 412-423.10.1080/10473289.1999.1046381228060646 Search in Google Scholar

64. Cook, F.; Knight, J., Oxygen transport to plant roots: Modeling for physical understanding of soil aeration. Soil Science Society of America Journal 2003, 67 (1), 20-31.10.2136/sssaj2003.2000 Search in Google Scholar

65. Hussain, R. R.; Ishida, T., Influence of connectivity of concrete pores and associated diffusion of oxygen on corrosion of steel under high humidity. Construction and Building Materials 2010, 24 (6), 1014-1019.10.1016/j.conbuildmat.2009.11.017 Search in Google Scholar

66. Jia, W.; Bao-rong, H., Characteristics of the oxygen reduction in atmospheric corrosion. Chinese Journal of Oceanology and Limnology 1997, 15 (1), 36-41.10.1007/BF02850580 Search in Google Scholar

67. Stratmann, M., The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers – A new experimental technique. Corrosion Science 1987, 27 (8), 869-872.10.1016/0010-938X(87)90043-6 Search in Google Scholar

68. Gabreab, E. M.; Hinds, G.; Fearn, S.; Hodgson, D.; Millichamp, J.; Shearing, P. R.; Brett, D. J., An electrochemical treatment to improve corrosion and contact resistance of stainless steel bipolar plates used in polymer electrolyte fuel cells. Journal of Power Sources 2014, 245, 1014-1026. Search in Google Scholar

69. Abbott, A. P.; Frisch, G.; Hartley, J.; Karim, W. O.; Ryder, K. S., Anodic dissolution of metals in ionic liquids. Progress in natural science: Materials international 2015, 25 (6), 595-602.10.1016/j.pnsc.2015.11.005 Search in Google Scholar

70. Elsler, B.; Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R., Metal-and Reagent-Free Highly Selective Anodic Cross-Coupling Reaction of Phenols. Angewandte Chemie International Edition 2014, 53 (20), 5210-5213.10.1002/anie.20140062724644088 Search in Google Scholar

71. King, A. D.; Birbilis, N.; Scully, J. R., Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study. Electrochimica Acta 2014, 121, 394-406. Search in Google Scholar

72. Barbalat, M.; Lanarde, L.; Caron, D.; Meyer, M.; Vittonato, J.; Castillon, F.; Fontaine, S.; Refait, P., Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection. Corrosion Science 2012, 55, 246-253. Search in Google Scholar

73. Kuş, E.; Mansfeld, F., An evaluation of the electrochemical frequency modulation (EFM) technique. Corrosion Science 2006, 48 (4), 965-979.10.1016/j.corsci.2005.02.023 Search in Google Scholar

74. Féron, D.; Macdonald, D. D., Prediction of long term corrosion behaviour in nuclear waste systems. MRS Online Proceedings Library (OPL) 2006, 932.10.1557/PROC-932-35.1 Search in Google Scholar

75. Birbilis, N.; Buchheit, R. G., Electrochemical characteristics of intermetallic phases in aluminum alloys: an experimental survey and discussion. Journal of the Electrochemical Society 2005, 152 (4), B140.10.1149/1.1869984 Search in Google Scholar

76. Yi, Y.; Weinberg, G.; Prenzel, M.; Greiner, M.; Heumann, S.; Becker, S.; Schlögl, R., Electrochemical corrosion of a glassy carbon electrode. Catalysis Today 2017, 295, 32-40. Search in Google Scholar

77. Vastag, G.; Szöcs, E.; Shaban, A.; Kálmán, E., New inhibitors for copper corrosion. Pure and Applied Chemistry 2001, 73 (12), 1861-1869.10.1351/pac200173121861 Search in Google Scholar

78. Natarajan, D.; Van Nguyen, T., A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors. Journal of the Electrochemical Society 2001, 148 (12), A1324.10.1149/1.1415032 Search in Google Scholar

79. Meyers, J. P.; Darling, R. M., Model of carbon corrosion in PEM fuel cells. Journal of the Electrochemical Society 2006, 153 (8), A1432.10.1149/1.2203811 Search in Google Scholar

80. Garcıa, I.; Drees, D.; Celis, J.-P., Corrosion-wear of passivating materials in sliding contacts based on a concept of active wear track area. Wear 2001, 249 (5-6), 452-460.10.1016/S0043-1648(01)00577-4 Search in Google Scholar

81. Goidanich, S.; Lazzari, L.; Ormellese, M., AC corrosion – Part 1: Effects on overpotentials of anodic and cathodic processes. Corrosion Science 2010, 52 (2), 491-497.10.1016/j.corsci.2009.10.005 Search in Google Scholar

82. Gurvich, M.; Dibenedetto, A.; Ranade, S., A new statistical distribution for characterizing the random strength of brittle materials. Journal of Materials Science 1997, 32 (10), 2559-2564.10.1023/A:1018594215963 Search in Google Scholar

83. Wang, K.; Ma, X.; Wang, Y.; He, R., Study on the time-dependent evolution of pitting corrosion in flowing environment. Journal of The Electrochemical Society 2017, 164 (7), C453.10.1149/2.0161709jes Search in Google Scholar

84. Schmidt, G.; Suermann, M.; Bensmann, B.; Hanke-Rauschenbach, R.; Neuweiler, I., Modeling overpotentials related to mass transport through porous transport layers of PEM water electrolysis cells. Journal of The Electrochemical Society 2020, 167 (11), 114511.10.1149/1945-7111/aba5d4 Search in Google Scholar

85. Scheiner, S.; Hellmich, C., Stable pitting corrosion of stainless steel as diffusion-controlled dissolution process with a sharp moving electrode boundary. Corrosion science 2007, 49 (2), 319-346.10.1016/j.corsci.2006.03.019 Search in Google Scholar

86. Young, D. J., High temperature oxidation and corrosion of metals. Elsevier, Vol. 1, 2008.10.1016/S1875-9491(08)00001-X Search in Google Scholar

87. Graedel, T.; Frankenthal, R., Corrosion mechanisms for iron and low alloy steels exposed to the atmosphere. Journal of the Electrochemical Society 1990, 137 (8), 2385.10.1149/1.2086948 Search in Google Scholar

88. Ezuber, H. M.; Alshater, A.; Hossain, S.; El-Basir, A., Impact of soil characteristics and moisture content on the corrosion of underground steel pipelines. Arabian Journal for Science and Engineering 2021, 46 (7), 6177-6188.10.1007/s13369-020-04887-8 Search in Google Scholar

89. Petersen, R.; Melchers, R., Long-term corrosion of cast iron cement lined pipes. Corrosion and Prevention 2012, 23 (10). Search in Google Scholar

90. He, B.; Han, P.; Hou, L.; Zhang, D.; Bai, X., Understanding the effect of soil particle size on corrosion behavior of natural gas pipeline via modelling and corrosion micromorphology. Engineering Failure Analysis 2017, 80, 325-340. Search in Google Scholar

eISSN:
1804-1213
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass