Otwarty dostęp

NeuroCyberGuard: Developing a Robust Cybersecurity Defense System through Deep Neural Learning-Based Mathematical Modeling


Zacytuj

Morley, D., & Parker, C. (2006). Computers and Technology in a Changing Society (Text Only). Thomson; Course Technology. Vol. 3, pp. 357-413 Search in Google Scholar

Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & information systems engineering, 6, 239-242. Search in Google Scholar

Mitchell, R., Michalski, J., &Carbonell, T. (2013). An artificial intelligence approach. Machine learning. Berlin, Heidelberg. pp. 41-81 Search in Google Scholar

Ashton, K. (2009). That ‘internet of things’ thing. RFID journal, 22(7), 97-114. Search in Google Scholar

Saini, D. K. (2012). Cyber defense: mathematical modeling and simulation. International Journal of Applied Physics and Mathematics, 2(5), 312. Search in Google Scholar

Rao, Y. S., Rauta, A. K., Saini, H., & Panda, T. C. (2017). Mathematical model for cyber attack in computer network. International Journal of Business Data Communications and Networking (IJBDCN), 13(1), 58-65. Search in Google Scholar

Mishra, B. K., &Jha, N. (2010). SEIQRS model for the transmission of malicious objects in computer network. Applied Mathematical Modelling, 34(3), 710-715. Search in Google Scholar

Martcheva, M. (2015). An introduction to mathematical epidemiology (Vol. 61, pp. 9-31). New York: Springer. Search in Google Scholar

LeVeque, R. J. (2007). Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. Society for Industrial and Applied Mathematics.pp. 13–58 Search in Google Scholar

Lagaris, I. E., Likas, A., & Fotiadis, D. I. (1998). Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks, 9(5), 987-1000. Search in Google Scholar

Zainuddin, Z., & Pauline, O. (2008). Function approximation using artificial neural networks. WSEAS Transactions on Mathematics, 7(6), 333-338. Search in Google Scholar

Yang, X., Chen, L., & Chen, J. (1996). Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models. Computers & mathematics with applications, 32(4), 109-116. Search in Google Scholar

Vynnycky, E., & White, R. (2010). An introduction to infectious disease modelling. pp 368. Search in Google Scholar

Diekmann, O., Heesterbeek, J. A. P., & Roberts, M. G. (2010). The construction of next-generation matrices for compartmental epidemic models. Journal of the royal society interface, 7(47), 873-885. Search in Google Scholar

C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Engin. 1, 361–404, 2004. Search in Google Scholar

Brandimarte, P., (2014). Handbook in Monte Carlo Simulation: Applications in Financial Engineering, Risk Management, and Economics. 10.1002/9781118593264. Search in Google Scholar

Guillén, J. H., &del Rey, A. M. (2018). Modeling malware propagation using a carrier compartment. Communications in Nonlinear Science and Numerical Simulation, 56, 217-226. Search in Google Scholar