1. bookTom 38 (2022): Zeszyt 3 (September 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2001-7367
Pierwsze wydanie
01 Oct 2013
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Variable Inclusion Strategies through Directed Acyclic Graphs to adjust Health Surveys subject to Selection Bias for Producing National Estimates

Data publikacji: 12 Sep 2022
Tom & Zeszyt: Tom 38 (2022) - Zeszyt 3 (September 2022)
Zakres stron: 875 - 900
Otrzymano: 01 Jul 2021
Przyjęty: 01 Apr 2022
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2001-7367
Pierwsze wydanie
01 Oct 2013
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Ali, M.S., R.H.H. Groenwold, S. Belister, W.R. Pestman, AW. Hoes, K.C.B. Roes, A. de Boer, and O.H. Klungel. 2015. “Reporting of covariate selection and balance assessment in propensity score analysis is suboptimal: a systematic review.” Journal of Clinical Epidemiology 68: 122–131. DOI: https://doi.org/10.1016/j.jclinepi.2014.08.011.25433444 Search in Google Scholar

Austin, P. 2008. “A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003.” Statistics in Medicine 27: 2037–2049. DOI: https://doi.org/10.1002/sim.3150.18038446 Search in Google Scholar

Baker, R., J.M. Brick, N.A. Bates, M. Battaglia, M.P. Couper, J.A. Dever, K.J. Gile, and R. Tourangeau. 2013. “Summary report on the APPOR task force on non-probability sampling.” Journal of Survey Statistics and Methodology 1(2): 90–143. DOI: https://doi.org/10.1093/jssam/smt008. Search in Google Scholar

Brookhart, M.A., S. Schneeweiss, K.J. Rothman, R.J. Glynn, J. Avorn, and T. Stürmer. 2006. “Variable selection for propensity score models.” American Journal of Epidemiology 163(12): 1149–1156. DOI: https://doi.org/10.1093/aje/kwj149.151319216624967 Search in Google Scholar

Brick, J.M. and R. Tourangeau. 2017. “Responsive Survey Designs for Reducing.” Journal of Official Statistics 33(3):735–752. DOI: https://doi.org/10.1515/jos-2017-0034. Search in Google Scholar

Chen, Y., P. Li, and C. Wu. 2019. “Doubly Robust Inference with Nonprobability Survey Samples.” Journal of the American Statistical Association: 1(11): 2011–2021. DOI: https://doi.org/10.1080/01621459.2019.1677241. Search in Google Scholar

Chen, J.K.T., R. Valliant, and M.R. Elliott. 2018. “Model-assisted calibration of non-probability sample survey data using adaptive LASSO.” Survey Methodology, 44(1): 117 – 144. Available at: http://link.gale.com/apps/doc/A663832408/AONE?u=anon,9db3f809&sid=googleScholar&xid=411f8f5e (accessed March 2022). Search in Google Scholar

Craig B.M, R.D. Hays, A.S. Pickard, D. Cella, D.A. Revicki, and B.B. Reeve. 2013. “Comparison of US panel vendors for online surveys.” Journal of the Medical Internet 15 (11): e260. DOI: https://doi.org/10.2196/jmir.2903.386908424292159 Search in Google Scholar

Grose, E., S. Wilson, J. Barkun, K. Bertens, G. Martel, F. Balaa, and J. Abou Khalil. 2020. “Use of Propensity Score Methodology in Contemporary High-Impact Surgical Literature.” Journal of the American College of Surgeons, 230(1): 101–112.e2. DOI: https://doi.org/10.1016/j.jamcollsurg.2019.10.003.31672675 Search in Google Scholar

Groves, R.M. 1989. Survey Errors and Survey Costs. New York: Wiley.10.1002/0471725277 Search in Google Scholar

Groves, R.M. 2006. “Nonresponse Rates and Nonresponse Bias in Household Surveys.” Public Opinion Quarterly 70: 646–675. DOI: https://doi.org/10.1093/poq/nfl033. Search in Google Scholar

Groves R.M. and E. Peytcheva. 2008. “The impact of nonresponse rates on nonresponse bias.” Public Opinion Quarterly 72 (2):167–189. DOI: https://doi.org/10.1093/poq/nfn011. Search in Google Scholar

Hernán, M.A. 2004. “A definition of causal effect for epidemiological research.” Journal of Epidemiology & Community Health, 58(265): 271. DOI: https://doi.org/10.1136/-jech.2002.006361. Search in Google Scholar

Iannacchione, V.G., J.G. Milne, and R.E. Folsom. 1991. “Response probability weight adjustments using logistic regression.” Proceedings of the section on survey research methods, American Statistical Association :637–642. Available at: http://www.asasrms.org/Proceedings/papers/1991_109.pdf (accessed March 2022). Search in Google Scholar

Irimata, K.E., Y. He, B. Cai, H.C. Shin, V.L. Parsons, and J.D. Parker. 2020. “Comparison of Quarterly and Yearly Calibration Data for Propensity Score Adjusted Web Survey Estimates.” Survey Methods: Insights from the Field, Special issue “Advancements in Online and Mobile Survey Methods.” DOI: https://doi.org/10.13094/SMIF-2020-00018.797617033748097 Search in Google Scholar

Kalish, H., C. Klumpp-Thomas, S. Hunsberger, H.A. Baus, M.P. Fay, N. Siriponget et al. 2021. “Mapping a Pandemic: SARS-CoV-2 Seropositivity in the United States.” Available at: https://www.medrxiv.org/content/10.1101/2021.01.27.21250570v1 (accessed June 2022). Search in Google Scholar

Kern, C., Y. Li, and L. Wang. 2021. “Boosted Kernel Weighting – Using Statistical Learning to Improve Inference from Nonprobability Samples.” Journal of Survey Statistics and Methodology 9(5): 1088–1113. DOI: https://doi.org/10.1093/jssam/smaa028. Search in Google Scholar

Kish, L. 1992. “Weighting for unequal Pi.” Journal of Official Statistics 8(2): 183–200. https://www.scb.se/contentassets/f6bcee6f397c4fd68db6452fc9643e68/weighting-for-unequal-empemsubemiemsub.pdf (accessed March 2022). Search in Google Scholar

Korn, E. and B.I. Graubard 1999. Analysis of Health Surveys. John Wiley & Sons.10.1002/9781118032619 Search in Google Scholar

Lessler, J.T. and W.D. Kalsbeek. 1992. Nonsampling Errors in Surveys. New York: John Wiley. Search in Google Scholar

Leyrat, C., A. Caille, A. Donner, and B. Giraudeau. 2013. “Propensity scores used for analysis of cluster randomized trials with selection bias: a simulation study.” Statistics in Medicine 32(19): 3357–3372. DOI: https://doi.org/10.1002/sim.5795.23553813 Search in Google Scholar

Li, Y., B. Graubard, and R. DiGaetano. 2011. “Weighting methods for population-based case-control study.” Journal of Royal Statistical Society C 60: 165–185. DOI: https://doi.org/10.1111/j.1467-9876.2010.00731.x. Search in Google Scholar

Little, R.J. and S. Vartivarian. 2003. “On weighting the rates in non-response weights.” Statistics in Medicine 22(9):1589–1599. DOI: https://doi.org/10.1002/sim.1513.12704617 Search in Google Scholar

Little, R.J. and S. Vartivarian. 2005. “Does weighting for nonresponse increase the variance of survey means?” Survey Methodology 31(2): 161–168. Available at: https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2005002/article/9046-eng.pdf?st=VelcJijp (accessed March 2022). Search in Google Scholar

Lumley, T. and A. Scott. 2015. “AIC and BIC for modeling with complex survey data.” Journal of Survey Statistics and Methodology 3 (1): 1–18. DOI: https://doi.org/10.1093/jssam/smu021. Search in Google Scholar

Lumley, T. 2020. Survey: analysis of complex surveysamples.R packageversion 4.4.0. Search in Google Scholar

NIH-AARP (National Institutes of Health and AARP Diet and Health Study). 2006. “Data Dictionary. August 2006.” Available at: http://dietandhealth.cancer.gov/docs/DataDictionary_Aug2006.pdf (accessed June 2022). Search in Google Scholar

Mercer, A., C. Kennedy, and H. Klein. 2018. For weighting online opt-in samples, what matters most. Pew Research Center. Available at: https://www.pewresearch.org/-methods/wp-content/uploads/sites/10/2018/01/Weighting-Online-Opt-In-Samples.pdf (accessed March 2022). Search in Google Scholar

National Center for Health Statistics. 2020. RANDS 3 Technical Documentation. Hyattsville, Maryland. Available at: https://www.cdc.gov/nchs/rands/files/RANDS3_technical_documentation.pdf (accessed June 2022). Search in Google Scholar

Parker, J., K. Miller, Y. He, P. Scanlon, B. Cai, H.-C. Shin, V. Parsons, and K. Irimata. 2020. “Overview and Initial Results of the National Center for Health Statistics’ Research and Development Survey.” Statistical Journal of the International Association for Official Statistics 36(4): 1199–1211. DOI: https://doi.org/10.3233/SJI-200678.934560635923778 Search in Google Scholar

Parker, J.D., M. Talih, D.J. Malec, V. Beresovsky, M. Carroll, and J.F. Gonzalez. 2017. “National Center for Health Statistics Data Presentation Standards for Proportions. National Center for Health Statistics.” Vital Health Stat, 2(175). Available at: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf (accessed June 2022) Search in Google Scholar

Pearl, J. 2009. Causality: Models, Reasoning, and Inference. Cambridge, England: Cambridge University Press.10.1017/CBO9780511803161 Search in Google Scholar

Pinsky, P.F., A. Miller, B.S. Kramer, T. Church, D. Reding, P. Prorok, E. Gelmann, R.E. Schoen, S. Buys, R.B. Hayes, and C.D. Berg. 2007. “Evidence of a healthy volunteer effect in the prostate, lung, colorectal, and ovarian cancer screening trial.” American Journal of Epidemiology165(8): 874–881. DOI: https://doi.org/10.1093/aje/kwk075.17244633 Search in Google Scholar

Robins, J., A. Rotnitzky, and L. Zhao. 1994. “Estimation of regression coefficients when some regressors are not always observed.” Journal of the American Statistical Association 89(427): 846–886. https://doi.org/10.1080/01621459.1994.10476818. Search in Google Scholar

Rosenbaum, P.R. and D.B. Rubin. 1983. “The central role of the propensity score in observational studies for causal effects.” Biometrika, 70(1): 41–55. DOI: https://doi.org/10.1093/biomet/70.1.41. Search in Google Scholar

Silverman, B.W. 1986. Density Estimation for Statistics and Data Analysis. London: Chapman and Hall. Search in Google Scholar

Valliant, R. 2020. “Comparing alternatives for estimation from nonprobability samples.” Journal of Survey Statistics and Methodology 8(2):231–263. DOI: https://doi.org/10.1093/jssam/smz003. Search in Google Scholar

Wang, L., B.I. Graubard, A.K. Hormuzd, and Y. Li. 2020a. “Improving External Validity of Epidemiologic Cohort Analyses: a Kernel Weighting Approach.” Journal of the Royal Statistical Society 183(3): 1293–1311. DOI: https://doi.org/10.1111/rssa.12564.756658633071484 Search in Google Scholar

Wang, L., B.I. Graubard, A.K. Hormuzd, and Y. Li. 2020b. “Efficient and Robust Propensity-Score-Based Methods for Population Inference using Epidemiologic Cohorts.” International Statistical Review 90(1):146–164. DOI: https://doi.org/10.1111/insr.12470. Search in Google Scholar

Wang, L., R. Valliant, and Y. Li. 2021. “Adjusted Logistic Propensity Weighting Methods for Population Inference using Nonprobability Volunteer-Based Epidemiologic Cohorts.” Statistics in Medicine 40(24): 5237–5250. DOI: https://doi.org/10.1002/sim.9122.852638834219260 Search in Google Scholar

Weitzen, S., K.L. Lapane, A.Y. Toledano, A.L. Hume, and V. Mor. 2004. “Principles for modeling propensity scores in medical research: a systematic literature review.” Phamacoepidemiologyand Drug Safety 13(12): 841–853. DOI: https://doi.org/10.1002/PDS.969.15386709 Search in Google Scholar

Yang, S., J.K. Kim, and R. Song. 2020. “Doubly robust inference when combining probability and non-probability samples with high dimensional data.” Journal of the Royal Statistical Society 82: 445–465. DOI: https://doi.org/10.1111/rssb.12354.764404233162780 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo