1. bookTom 37 (2021): Zeszyt 4 (December 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2001-7367
Pierwsze wydanie
01 Oct 2013
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
access type Otwarty dostęp

Occupation Coding During the Interview in a Web-First Sequential Mixed-Mode Survey

Data publikacji: 26 Dec 2021
Tom & Zeszyt: Tom 37 (2021) - Zeszyt 4 (December 2021)
Zakres stron: 981 - 1007
Otrzymano: 01 May 2020
Przyjęty: 01 Mar 2021
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2001-7367
Pierwsze wydanie
01 Oct 2013
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Abstract

Coding respondent occupation is one of the most challenging aspects of survey data collection. Traditionally performed manually by office coders post-interview, previous research has acknowledged the advantages of coding occupation during the interview, including reducing costs, processing time and coding uncertainties that are more difficult to address post-interview. However, a number of concerns have been raised as well, including the potential for interviewer effects, the challenge of implementing the coding system in a web survey, in which respondents perform the coding procedure themselves, or the feasibility of implementing the same standardized coding system in a mixed-mode self- and interviewer-administered survey. This study sheds light on these issues by presenting an evaluation of a new occupation coding method administered during the interview in a large-scale sequential mixed-mode (web, telephone, face-to-face) cohort study of young adults in the UK. Specifically, we assess the take-up rates of this new coding method across the different modes and report on several other performance measures thought to impact the quality of the collected occupation data. Furthermore, we identify factors that affect the coding of occupation during the interview, including interviewer effects. The results carry several implications for survey practice and directions for future research.

Keywords

Belloni, M., A. Brugiavini, E. Meschi, and K. Tijdens. 2016. “Measuring and detecting errors in occupational coding: an analysis of SHARE data.” Journal of Official Statistics, 32(4): 917–945. DOI: https://doi.org/10.1515/jos-2016-0049.10.1515/jos-2016-0049 Search in Google Scholar

Bergmann, M.M., and D. Joye. 2005. “Comparing Social Stratification Schemata: CAMSIS, CSP-CH, Goldthorpe, ISCO-88, Treiman, and Wright.” Cambridge Studies in Social Research 10: 1–35. Available at: https://www.sociology.cam.ac.uk/system/-files/documents/cs10.pdf (accessed October 2019). Search in Google Scholar

Brugiavini, A., M. Belloni, R.E. Buia, and M. Martens. 2017. The “Job Coder”. In SHARE Wave 6: Panel innovations and collecting Dried Blood Spots. Edited by F. Malter and A. Börsch-Supan. Munich: MEA, Max Planck Institute for Social Law and Social Policy: 51–70. Available at: http://www.share-project.org/uploads/tx_sharepublications/201804_SHARE-WAVE-6_MFRB.pdf (accessed October 2019). Search in Google Scholar

Burstyn, I., A. Slutsky, D.G. Lee, A.B. Singer, Y. An, and Y.L. Michael. 2014. “Beyond Crosswalks: Reliability of Exposure Assessment Following Automated Coding of FreeText Job Descriptions for Occupational Epidemiology.” The Annals of Occupational Hygiene 58(4): 482–492. DOI: https://doi.org/10.1093/annhyg/meu006.10.1093/annhyg/meu00624504175 Search in Google Scholar

Campanelli, P., K. Thompson, N. Moon, and T. Staples. 1997. “The Quality of Occupational Coding in the United Kingdom.” In Survey Measurement and Process Quality. Edited by L. Lyberg, P. Biemer, M. Collins, E. De Leeuw, C. Dippo, N. Schwarz, and D. Trewin: 437–453. New York: Wiley. Search in Google Scholar

Cantor, D., and J.L. Esposito. 1992. “Evaluating Interviewer Style for Collecting Industry and Occupation Information.” In Proceedings of the Section on Survey Methods, American Statistical Association: 661–666. Available at https://www.bls.gov/osmr/research-papers/1992/pdf/cp920010.pdf (accessed March 2021). Search in Google Scholar

Centre for Longitudinal Studies. 2017. Next Steps Age 25 Survey. Technical Report. University College London. Available at: http://doc.ukdataservice.ac.uk/doc/5545/mrdoc/pdf/5545age_25_technical_report.pdf (accessed October 2019). Search in Google Scholar

Conrad, F., M. Couper, and J.W. Sakshaug. 2016. “Classifying Open-Ended Reports: Factors Affecting the Reliability of Occupation Codes.” Journal of Official Statistics 32(1): 75–92. DOI: https://doi.org/10.1515/jos-2016-0003.10.1515/jos-2016-0003 Search in Google Scholar

Creecy, R.H., B.M. Masand, S.J. Smith, and D.L. Waltz. 1992. “Trading MIPS and memory for knowledge engineering”. Communications of the ACM 35(8): 48–64. DOI: https://doi.org/10.1145/135226.135228.10.1145/135226.135228 Search in Google Scholar

Department for Education. 2011. LSYPE User Guide to the Datasets: Wave 1 to Wave 7. Available at: http://doc.ukdataservice.ac.uk/doc/5545/mrdoc/pdf/5545lsype_user_guide_wave_1_to_wave_7.pdf (accessed October 2019). Search in Google Scholar

Elias, P., M. Birch, and R. Ellison. 2014. CASCOT International version 5. User Guide. Institute for Employment Research, University of Warwick, Coventry. Available at: https://warwick.ac.uk/fac/soc/ier/software/cascot/internat/cascot_international_user_-guide.pptx (accessed October 2019). Search in Google Scholar

Gweon H., M. Schonlau, L. Kaczmirek, M. Blohm, and S. Steiner. 2017. “Three Methods for Occupation Coding Based on Statistical Learning.” Journal of Official Statistics 33(1): 101–122. DOI: http://dx.doi.org/10.1515/JOS-2017-0006.10.1515/jos-2017-0006 Search in Google Scholar

Hacking, W., J. Michiels, and S. Jansen, S. 2006. “Computer Assisted Coding by Interviewers.” In Proceedings of the 10th International Blaise Users Conference, IBUC 2006, 9–12 May, Arnhem, The Netherlands. Available at: http://blaiseusers.org/2006/Papers/291.pdf (accessed October 2019). Search in Google Scholar

Helppie-McFall, B. and A. Sonnega. 2018. Feasibility and Reliability of Automated Coding of Occupation in the Health and Retirement Study. Ann Arbor MI: University of Michigan Retirement Research Center (WP 2018-392). Available at: https://mrdrc.isr.umich.edu/publications/papers/pdf/wp392.pdf (accessed October 2020).10.2139/ssrn.3338502 Search in Google Scholar

Hoffman, E. 1995. What Kind of Work Do You Do? Data collection and processing strategies when measuring “occupation” for statistical surveys and administrative records. ILO. (WP 1995: 95-1). Available at: https://www.ilo.org/wcmsp5/groups/public/–-dgreports/–-stat/documents/publication/wcms_087880.pdf (accessed October 2019). Search in Google Scholar

Hox, J.J., E.D. De Leeuw, and E.A. Zijlmans. 2015. “Measurement Equivalence in Mixed Mode Surveys.” Frontiers in Psychology 6(87): 1–11. DOI: https://doi.org/10.3389/fpsyg.2015.00087.10.3389/fpsyg.2015.00087431828225699002 Search in Google Scholar

Klausch, T., B. Schouten, and J.J. Hox. 2017. “Evaluating Bias of Sequential Mixed-Mode Designs against Benchmark Surveys,” Sociological Methods and Research 46(3): 456–489. DOI: https://doi.org/10.1177/0049124115585362.10.1177/0049124115585362 Search in Google Scholar

Lyberg, L., and P. Dean. 1992. Automated Coding of Survey Responses: An International Review. R&D Reports (1992–2). Statistics Sweden, Stockholm, Sweden. Available at: https://www.scb.se/contentassets/7c4edb581f8745e3a081e1ba9b332eb4/rnd-report-1992-02-green.pdf (accessed October 2019). Search in Google Scholar

Massing, N., M. Wasmer, C. Wolf, and C. Zuell. 2019. “How Standardized is Occupational Coding? A Comparison of Results from Different Coding Agencies in Germany.” Journal of Official Statistics 35(1): 167–187. DOI: http://dx.doi.org/10.2478/JOS-2019-0008.10.2478/jos-2019-0008 Search in Google Scholar

Office for National Statistics. 2010a. Standard Occupational Classification 2010 Volume 1 Structure and descriptions of unit groups. Available at: https://www.ons.gov.uk/-methodology/classificationsandstandards/standardoccupationalclassificationsoc/-soc2010/soc2010volume1structureanddescriptionsofunitgroups (accessed October 2019). Search in Google Scholar

Office for National Statistics. 2010b. Standard Occupational Classification 2010 Volume 2: the structure and coding index. Available at: https://www.https://www.ons.gov.uk/-methodology/classificationsandstandards/standardoccupationalclassificationsoc/-soc2010/soc2010volume2thestructureandcodingindex (accessed October 2020). Search in Google Scholar

Ossiander, E.M., and S. Milham. 2006. “A computer system for coding occupation.” American Journal of Industrial Medicine 49: 854–857. DOI: https://doi.org/10.1002/ajim.20355.10.1002/ajim.2035516804909 Search in Google Scholar

Schierholz, M., M. Gensicke, N. Tschersich, and F. Kreuter. 2018. “Occupation Coding During the Interview.” Journal of the Royal Statistical Society A 181: 379–407. DOI: http://dx.doi.org/10.1111/rssa.12297.10.1111/rssa.12297 Search in Google Scholar

Schierholz, M., and M. Schonlau. 2020. “Machine Learning for Occupation Coding – a Comparison Study.” Journal of Survey Statistics and Methodology, smaa023. DOI: https://doi.org/10.1093/jssam/smaa023.10.1093/jssam/smaa023 Search in Google Scholar

Tijdens, K. 2014. Reviewing the measurement and comparison of occupations across Europe (WP 149, AIAS). Available at: https://pure.uva.nl/ws/files/2172301/154005_WP149_Tijdens_1.pdf (accessed October 2019). Search in Google Scholar

Tijdens, K. 2015a. The design of a tool for the measurement of occupations in web surveys using a global index of occupations. Leuven. (WP InGRID project M21.2). Available at: https://inclusivegrowth.be/downloads/output/m21-4-coding-tool-eind.pdf (accessed October 2020). Search in Google Scholar

Tijdens, K. 2015b. “Self-identification of occupation in web surveys: requirements for search trees and look-up tables” Survey Methods: Insights from the Field. Available at: https://surveyinsights.org/wp-content/uploads/2015/06/Self-identification-of-occupation-in-web-surveys-requirements-for-search-trees-and-look-up-tables-Survey-Methods-Insights-from-the-Field-SMIF.pdf (accessed October 2020). Search in Google Scholar

Tijdens, K. 2016. “Measuring occupations: respondent’s self- identification from a large database.” In Proceedings of European Conference on Quality of Official Statistics, Special session: Synergies for Europe’s Research Infrastructures in the Social Sciences and Official Statistics (SERISS), 2 June 2016. Available at: https://seriss.eu/wp-content/uploads/2016/06/Measuring-Occupations-Respondent%e2%80%99s-self-identification-from-a-large-database.pdf (accessed October 2020). Search in Google Scholar

Tijdens, K., and S. Visintin. 2017. EU-harmonised and comparative measurement of occupations and skills. Leuven. (InGRID project Deliverable 21.1). Available at: https://inclusivegrowth.be/downloads/output/d21-1-eind.pdf (accessed October 2019). Search in Google Scholar

Vannieuwenhuyze, J.T.A., and G. Loosveldt. 2013. “Evaluating Relative Mode Effects in Mixed-Mode Surveys: Three Methods to Disentangle Selection and Measurement Effects,” Sociological Methods and Research 42(1): 82–104. DOI: https://doi.org/10.1177/0049124112464868.10.1177/0049124112464868 Search in Google Scholar

Vannieuwenhuyze, J.T.A., G. Loosveldt, and G. Molenberghs. 2014. “Evaluating Mode Effects in Mixed-Mode Survey Data Using Covariate Adjustment Models,” Journal of Official Statistics 30 (1): 1–21. DOI: https://doi.org/10.2478/jos-2014-0001.10.2478/jos-2014-0001 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo