Interaction of Light Intensity and CO2 Concentration Alters Biomass Partitioning in Chrysanthemum
27 lis 2021
O artykule
Data publikacji: 27 lis 2021
Zakres stron: 45 - 56
Otrzymano: 01 gru 2020
Przyjęty: 01 cze 2021
DOI: https://doi.org/10.2478/johr-2021-0015
Słowa kluczowe
© 2021 Maral Hosseinzadeh et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Figure 1

Figure 2

Figure 3
![Root system of chrysanthemum affected by light intensity and CO2 concentration. The plants were exposed to different concentrations of CO2 [400 ppm as ambient CO2 (a[CO2]) and 1,000 ppm as elevated CO2 (e[CO2])] and light intensities (75, 150, 300, and 600 μmol·m−2·s−1 PPFD)Note: See Figure 1](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64722564215d2f6c89dbd6cb/j_johr-2021-0015_fig_003.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250911%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250911T222626Z&X-Amz-Expires=3600&X-Amz-Signature=6f4e188476d3daac549ec629c979d5feb936f65fbe1826b3cff0cdc2362090de&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 4
![Interaction effect of light intensity and concentration of CO2 on the flowering of chrysanthemum. Plants were exposed to different concentrations of CO2 [400 ppm as ambient CO2 (a[CO2]) and 1,000 ppm as elevated CO2 (e[CO2])] and light intensities (75, 150, 300, and 600 μmol·m−2·s−1 PPFD)Note: See Figure 1](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64722564215d2f6c89dbd6cb/j_johr-2021-0015_fig_004.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250911%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250911T222626Z&X-Amz-Expires=3600&X-Amz-Signature=2943ba7a781971c9a2ef1e450381ebea192278e00417e0e8d7878a098bcd5f47&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 5
![Diminishing effect of elevated CO2 (calculated as reduction in biomass accumulation in plants under e[CO2] compared to a[CO2]) on total biomass of chrysanthemum plants grown under different light intensities](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64722564215d2f6c89dbd6cb/j_johr-2021-0015_fig_005.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250911%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250911T222626Z&X-Amz-Expires=3600&X-Amz-Signature=d31a9546ca11ced53b0b6bffbbb6aacb4ecc369a86b1dc8940168cdcce857bb0&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 6
![Allocation of biomass (DW) to different organs in response to CO2 concentrations and light intensities. Plants were exposed to different concentrations of CO2 [400 ppm as ambient CO2 (a[CO2]) and 1,000 ppm as elevated CO2 (e[CO2])] and light intensities (75, 150, 300, and 600 μmol·m−2·s−1 PPFD)Note: See Figure 1](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64722564215d2f6c89dbd6cb/j_johr-2021-0015_fig_006.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250911%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250911T222626Z&X-Amz-Expires=3600&X-Amz-Signature=26ac93306d98c57afd1cb734b41f956db6fce9afc70a892e49a7aa0b80219335&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 7
