[
Beg, S., Kaushal, D. R., 2019. Experimental investigation of static settled concentration of multi-sized coking coal-water slurry. In: Proc. 19th Int. Conf. Transport and Sedimentation of Solid Particles, Cape Town, South Africa, pp. 177–184. DOI: 10.30825/4.12-41.2019.
]Search in Google Scholar
[
Behari, M., Das, D., Mohanty, A. M., 2022. Influence of surfactant for stabilization and pipeline transportation of iron ore water slurry: A review. ACS Omega, 7 (33), 28708–28722.
]Search in Google Scholar
[
Buszko, M. H., Krella, A. K., 2019. Influence of factors of flow condition, particle, and material properties on slurry erosion resistance. Adv. Mater. Sci., 19 (2), 28–53.
]Search in Google Scholar
[
Calderon-Hernandez, J.W., Sinatora, A., de Melo, H.G., Chaves, A.P., Mano, E.S., Leal Filho, L.S., Pinto, T.C.S., de Sousa, F.A., de Souza, F.J., 2020. Hydraulic convey of iron ore slurry: Pipeline wear and ore particle degradation in function of pumping time. Wear, 450, 203272.
]Search in Google Scholar
[
Darby, R., Melson, J., 1981. How to predict the friction factor for flow of Bingham plastics. Chem. Eng., 28, 59–61.
]Search in Google Scholar
[
Das, S. N., Biswal, S. K., Mohapatra, R. K., 2020. Recent advances on stabilization and rheological behaviour of iron ore slurry for economic pipeline transportation. Mater. Today Proc., 33, 5093–5097.
]Search in Google Scholar
[
Dubey, A., Prasad, V., Senapati, P. K., Barik, R., Pothal, J. K., 2024. Scale-up prediction of the head loss of a high concentration, non-Newtonian particulate slurry. Part. Sci. Technol., 1–14.
]Search in Google Scholar
[
Eswaraiah, C., Biswal, S. K., Mishra, B. K., 2012. Settling characteristics of ultrafine iron ore slimes. Int. J. Miner. Metall. Mater., 19 (2), 95–99.
]Search in Google Scholar
[
Gillies, R. G., Shook, C. A., Xu, J., 2004. Modelling heterogeneous slurry flows at high velocities. Can. J. Chem. Eng., 82(5), 1060–1065.
]Search in Google Scholar
[
Gupta, C., Kumar, S., 2024. Improving rheology, slurry ability and stability of iron ore suspension employing variances in size distribution. Arab. J. Sci. Eng., 49 (2), 2531–2552.
]Search in Google Scholar
[
Haldenwang, R., Sutherland, A. P. N., Fester, V. G., Holm, R., Chhabra, R. P., 2012. Sludge pipe flow pressure drop prediction using composite power-law friction factor-Reynolds number correlations based on different non-Newtonian Reynolds numbers. Water SA, 38 (4), 615–622.
]Search in Google Scholar
[
Johnson, D. H., Vahedifard, F., Jelinek, B., Peters, J. F., 2017. Micromechanical modeling of discontinuous shear thickening in granular media-fluid suspension. J. Rheol., 61 (2), 265–277.
]Search in Google Scholar
[
Kaushal, D. R., Tomita, Y., 2002. Solids concentration profiles and pressure drop in pipeline flow of multisized particulate slurries. Int. J. Multiphase Flow, 28 (10), 1697–1717.
]Search in Google Scholar
[
Kaushal, D. R., Tomita, Y., 2003. Comparative study of pressure drop in multisized particulate slurry flow through pipe and rectangular duct. Int. J. Multiphase Flow, 29(9), 1473–1487.
]Search in Google Scholar
[
Kaushal, D. R., Kumar, A., Tomita, Y., Kuchii, S., Tsukamoto, H., 2013. Flow of mono-dispersed particles through horizontal bend. Int. J. Multiphase Flow, 52, 71–91.
]Search in Google Scholar
[
Kumar, N., Gopaliya, M. K., Kaushal, D. R., 2019. Experimental investigations and CFD modeling for flow of highly concentrated iron ore slurry through horizontal pipeline. Part. Sci. Technol., 37(2), 232–250.
]Search in Google Scholar
[
Kumar, N., Kaushal, D. R., Dwivedi, V. K., Singh, D. B., Sharma, S. K., Yadav, J. K., 2020. CFD modeling of fly-ash slurry to analyse the concentration and velocity profiles. Mater. Today Proc., 21, 1695–1699.
]Search in Google Scholar
[
Kumar, S., Singh, M., Singh, J., Singh, J. P., Kumar, S., 2019. Rheological characteristics of uni/bi-variant particulate iron ore slurry: Artificial neural network approach. J. Min. Sci., 55(2), 201–212.
]Search in Google Scholar
[
Lun, C. K., Savage, S. B., Jeffrey, D. J., Chepurniy, N., 1984. Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech., 140, 223–256.
]Search in Google Scholar
[
Messa, G.V., Yang, Q., Adedeji, O.E., Chára, Z., Duarte, C.A.R., Matoušek, V., Vlasák, P., Sýkora, J., Khetagurov, A.S., Matvieiev, O.V., Pagliara, S., de Souza, F.J., 2021. Computational fluid dynamics modelling of liquid–solid slurry flows in pipelines: State-of-the-art and future perspectives. Processes, 9(9), 1566.
]Search in Google Scholar
[
Melorie, A. K., Kaushal, D. R., 2018. Experimental investigations of the effect of chemical additives on the rheological properties of highly concentrated iron ore slurries. KONA Powder Part. J., 35, 186–199.
]Search in Google Scholar
[
Mishra, S. S., Sahoo, S. D., Khuntia, A. S., Parida, A. K., Saha, S., Mohanty, S. K., Choudhury, B., Behera, A., Rout, B., 2023. Numerical study of pressure drop calculation for Newtonian slurry through a multi-segmented HDPE pipeline. In: Tripathy, S., Samantaray, S., Ramkumar, J., Mahapatra, S. S. (Eds.): Recent Advances in Mechanical Engineering. ICRAMERD 2022. Lecture Notes in Mechanical Engineering, pp. 321–332.
]Search in Google Scholar
[
Panda, L., Biswal, S. K., Venugopal, R., Mandre, N. R., 2018. Recovery of ultra-fine iron ore from iron ore tailings. Trans. Indian Inst. Met., 71, 463–468.
]Search in Google Scholar
[
Poloski, A.P., Adkins, H.E., Abrefah, J., Casella, A.M., Hohimer, R.E., Nigl, F., Minette, M.J., Toth, J.J., Tingey, J.M. & Yokuda, S.T., 2009. Deposition velocities of Newtonian and non-Newtonian slurries in pipelines. Pacific Northwest National Laboratory.
]Search in Google Scholar
[
Reddy, N.V.K., Pothal, J.K., Barik, R., Senapati, P.K., 2023. Pipeline slurry transportation system: An overview. Journal of Pipeline Systems Engineering and Practice, 14(3), 03123001.
]Search in Google Scholar
[
Senapati, P.K., Pothal, J.K., Barik, R., Kumar, R., Bhatnagar, S.K., 2018. Effect of particle size, blend ratio and some selective bio-additives on rheological behaviour of high-concentration iron ore slurry. In: Paste 2018: Proceedings of the 21st International Seminar on Paste and Thickened Tailings, Australian Centre for Geomechanics, pp. 227–238.
]Search in Google Scholar
[
Senapati, P. K., Pothal, J. K., Barik, R., Pradhan, C. R., Kumar, R., Basu, S., 2019. Prediction of pressure drop and optimization of operational pipe flow parameters for hydraulic transportation of concentrated iron ore fines slurry. In: Proc. 19th Int. Conf. Transport and Sedimentation of Solid Particles, Cape Town, South Africa.Shakeel, A., Yu, L., Zhang, X., & Zhu, Q. (2020). Yield stress measurements of mud sediments using different rheological methods and geometries: An evidence of two-step yielding. Marine Georesources & Geotechnology, 38(5), 567–578.
]Search in Google Scholar
[
Shakeel, A., Yu, L., Zhang, X. & Zhu, Q., 2020. Yield stress measurements of mud sediments using different rheological methods and geometries: An evidence of two-step yielding. Marine Georesources & Geotechnology, 38(5), pp.567–578.
]Search in Google Scholar
[
Singh, H.P., Beg, S., Kaushal, D.R., 2022. Effect of soaking time on rheological properties and settling characteristics of coking coal slurry. International Journal of Coal Preparation and Utilization, 42(4), pp.1088–1104. https://doi.org/10.1080/19392699.2019.1692338
]Search in Google Scholar
[
Slatter, P.T., Lazarus, J.H., 1993. Critical flow in slurry pipelines. In: Proceedings of the 12th International Conference on Slurry Handling and Pipeline Transport (Hydrotransport 12). BHR Group, p.639.
]Search in Google Scholar
[
Slatter, P.T., 2000. The role of rheology in the pipelining of mineral slurries. Mineral Processing and Extractive Metallurgy Review, 20(1), pp.281–300.
]Search in Google Scholar
[
Slatter, P.T., 2004. The hydraulic transportation of thickened sludges. In: Proceedings of the 2004 Water Institute of Southern Africa (WISA) Biennial Conference, Cape Town, South Africa.
]Search in Google Scholar
[
Vieira, M.G., Peres, A.E., 2012. Effect of reagents on the rheo-logical behavior of an iron ore concentrate slurry. International Journal of Mining Engineering and Mineral Processing, 1(2), pp.38–42.
]Search in Google Scholar
[
Wang, Z., Chen, L., Hu, M., 2023. Experiment research and mechanism analysis on rheological properties of tailings slurry. Frontiers in Earth Science, 10, 1083436.
]Search in Google Scholar
[
Wasp, E.J., Thompson, T.L., Aude, T.C., 1971. Initial economic evaluation of slurry pipeline systems. Transportation Engineering Journal of ASCE, 97(2), pp.271–279.
]Search in Google Scholar
[
Yang, Y., Wang, H., Klein, B., Wu, A., 2020. Shear‐dependent yield stress of iron ore fine tailings in two‐step flocculation process. Advances in Materials Science and Engineering, 2020(1), 6611392.
]Search in Google Scholar
[
Zeng, J.M., Zhu, H.X., Kong, J.Y. (eds.), 2013. Advances in Chemical, Material and Metallurgical Engineering. Trans Tech Publications Ltd.
]Search in Google Scholar