Otwarty dostęp

Highly concentrated iron ore slurry flow through pipeline with and without chemical additive; part I: Experimental investigations and proposed model for the prediction of pressure drop

 oraz   
19 cze 2025

Zacytuj
Pobierz okładkę

Beg, S., Kaushal, D. R., 2019. Experimental investigation of static settled concentration of multi-sized coking coal-water slurry. In: Proc. 19th Int. Conf. Transport and Sedimentation of Solid Particles, Cape Town, South Africa, pp. 177–184. DOI: 10.30825/4.12-41.2019. Search in Google Scholar

Behari, M., Das, D., Mohanty, A. M., 2022. Influence of surfactant for stabilization and pipeline transportation of iron ore water slurry: A review. ACS Omega, 7 (33), 28708–28722. Search in Google Scholar

Buszko, M. H., Krella, A. K., 2019. Influence of factors of flow condition, particle, and material properties on slurry erosion resistance. Adv. Mater. Sci., 19 (2), 28–53. Search in Google Scholar

Calderon-Hernandez, J.W., Sinatora, A., de Melo, H.G., Chaves, A.P., Mano, E.S., Leal Filho, L.S., Pinto, T.C.S., de Sousa, F.A., de Souza, F.J., 2020. Hydraulic convey of iron ore slurry: Pipeline wear and ore particle degradation in function of pumping time. Wear, 450, 203272. Search in Google Scholar

Darby, R., Melson, J., 1981. How to predict the friction factor for flow of Bingham plastics. Chem. Eng., 28, 59–61. Search in Google Scholar

Das, S. N., Biswal, S. K., Mohapatra, R. K., 2020. Recent advances on stabilization and rheological behaviour of iron ore slurry for economic pipeline transportation. Mater. Today Proc., 33, 5093–5097. Search in Google Scholar

Dubey, A., Prasad, V., Senapati, P. K., Barik, R., Pothal, J. K., 2024. Scale-up prediction of the head loss of a high concentration, non-Newtonian particulate slurry. Part. Sci. Technol., 1–14. Search in Google Scholar

Eswaraiah, C., Biswal, S. K., Mishra, B. K., 2012. Settling characteristics of ultrafine iron ore slimes. Int. J. Miner. Metall. Mater., 19 (2), 95–99. Search in Google Scholar

Gillies, R. G., Shook, C. A., Xu, J., 2004. Modelling heterogeneous slurry flows at high velocities. Can. J. Chem. Eng., 82(5), 1060–1065. Search in Google Scholar

Gupta, C., Kumar, S., 2024. Improving rheology, slurry ability and stability of iron ore suspension employing variances in size distribution. Arab. J. Sci. Eng., 49 (2), 2531–2552. Search in Google Scholar

Haldenwang, R., Sutherland, A. P. N., Fester, V. G., Holm, R., Chhabra, R. P., 2012. Sludge pipe flow pressure drop prediction using composite power-law friction factor-Reynolds number correlations based on different non-Newtonian Reynolds numbers. Water SA, 38 (4), 615–622. Search in Google Scholar

Johnson, D. H., Vahedifard, F., Jelinek, B., Peters, J. F., 2017. Micromechanical modeling of discontinuous shear thickening in granular media-fluid suspension. J. Rheol., 61 (2), 265–277. Search in Google Scholar

Kaushal, D. R., Tomita, Y., 2002. Solids concentration profiles and pressure drop in pipeline flow of multisized particulate slurries. Int. J. Multiphase Flow, 28 (10), 1697–1717. Search in Google Scholar

Kaushal, D. R., Tomita, Y., 2003. Comparative study of pressure drop in multisized particulate slurry flow through pipe and rectangular duct. Int. J. Multiphase Flow, 29(9), 1473–1487. Search in Google Scholar

Kaushal, D. R., Kumar, A., Tomita, Y., Kuchii, S., Tsukamoto, H., 2013. Flow of mono-dispersed particles through horizontal bend. Int. J. Multiphase Flow, 52, 71–91. Search in Google Scholar

Kumar, N., Gopaliya, M. K., Kaushal, D. R., 2019. Experimental investigations and CFD modeling for flow of highly concentrated iron ore slurry through horizontal pipeline. Part. Sci. Technol., 37(2), 232–250. Search in Google Scholar

Kumar, N., Kaushal, D. R., Dwivedi, V. K., Singh, D. B., Sharma, S. K., Yadav, J. K., 2020. CFD modeling of fly-ash slurry to analyse the concentration and velocity profiles. Mater. Today Proc., 21, 1695–1699. Search in Google Scholar

Kumar, S., Singh, M., Singh, J., Singh, J. P., Kumar, S., 2019. Rheological characteristics of uni/bi-variant particulate iron ore slurry: Artificial neural network approach. J. Min. Sci., 55(2), 201–212. Search in Google Scholar

Lun, C. K., Savage, S. B., Jeffrey, D. J., Chepurniy, N., 1984. Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech., 140, 223–256. Search in Google Scholar

Messa, G.V., Yang, Q., Adedeji, O.E., Chára, Z., Duarte, C.A.R., Matoušek, V., Vlasák, P., Sýkora, J., Khetagurov, A.S., Matvieiev, O.V., Pagliara, S., de Souza, F.J., 2021. Computational fluid dynamics modelling of liquid–solid slurry flows in pipelines: State-of-the-art and future perspectives. Processes, 9(9), 1566. Search in Google Scholar

Melorie, A. K., Kaushal, D. R., 2018. Experimental investigations of the effect of chemical additives on the rheological properties of highly concentrated iron ore slurries. KONA Powder Part. J., 35, 186–199. Search in Google Scholar

Mishra, S. S., Sahoo, S. D., Khuntia, A. S., Parida, A. K., Saha, S., Mohanty, S. K., Choudhury, B., Behera, A., Rout, B., 2023. Numerical study of pressure drop calculation for Newtonian slurry through a multi-segmented HDPE pipeline. In: Tripathy, S., Samantaray, S., Ramkumar, J., Mahapatra, S. S. (Eds.): Recent Advances in Mechanical Engineering. ICRAMERD 2022. Lecture Notes in Mechanical Engineering, pp. 321–332. Search in Google Scholar

Panda, L., Biswal, S. K., Venugopal, R., Mandre, N. R., 2018. Recovery of ultra-fine iron ore from iron ore tailings. Trans. Indian Inst. Met., 71, 463–468. Search in Google Scholar

Poloski, A.P., Adkins, H.E., Abrefah, J., Casella, A.M., Hohimer, R.E., Nigl, F., Minette, M.J., Toth, J.J., Tingey, J.M. & Yokuda, S.T., 2009. Deposition velocities of Newtonian and non-Newtonian slurries in pipelines. Pacific Northwest National Laboratory. Search in Google Scholar

Reddy, N.V.K., Pothal, J.K., Barik, R., Senapati, P.K., 2023. Pipeline slurry transportation system: An overview. Journal of Pipeline Systems Engineering and Practice, 14(3), 03123001. Search in Google Scholar

Senapati, P.K., Pothal, J.K., Barik, R., Kumar, R., Bhatnagar, S.K., 2018. Effect of particle size, blend ratio and some selective bio-additives on rheological behaviour of high-concentration iron ore slurry. In: Paste 2018: Proceedings of the 21st International Seminar on Paste and Thickened Tailings, Australian Centre for Geomechanics, pp. 227–238. Search in Google Scholar

Senapati, P. K., Pothal, J. K., Barik, R., Pradhan, C. R., Kumar, R., Basu, S., 2019. Prediction of pressure drop and optimization of operational pipe flow parameters for hydraulic transportation of concentrated iron ore fines slurry. In: Proc. 19th Int. Conf. Transport and Sedimentation of Solid Particles, Cape Town, South Africa.Shakeel, A., Yu, L., Zhang, X., & Zhu, Q. (2020). Yield stress measurements of mud sediments using different rheological methods and geometries: An evidence of two-step yielding. Marine Georesources & Geotechnology, 38(5), 567–578. Search in Google Scholar

Shakeel, A., Yu, L., Zhang, X. & Zhu, Q., 2020. Yield stress measurements of mud sediments using different rheological methods and geometries: An evidence of two-step yielding. Marine Georesources & Geotechnology, 38(5), pp.567–578. Search in Google Scholar

Singh, H.P., Beg, S., Kaushal, D.R., 2022. Effect of soaking time on rheological properties and settling characteristics of coking coal slurry. International Journal of Coal Preparation and Utilization, 42(4), pp.1088–1104. https://doi.org/10.1080/19392699.2019.1692338 Search in Google Scholar

Slatter, P.T., Lazarus, J.H., 1993. Critical flow in slurry pipelines. In: Proceedings of the 12th International Conference on Slurry Handling and Pipeline Transport (Hydrotransport 12). BHR Group, p.639. Search in Google Scholar

Slatter, P.T., 2000. The role of rheology in the pipelining of mineral slurries. Mineral Processing and Extractive Metallurgy Review, 20(1), pp.281–300. Search in Google Scholar

Slatter, P.T., 2004. The hydraulic transportation of thickened sludges. In: Proceedings of the 2004 Water Institute of Southern Africa (WISA) Biennial Conference, Cape Town, South Africa. Search in Google Scholar

Vieira, M.G., Peres, A.E., 2012. Effect of reagents on the rheo-logical behavior of an iron ore concentrate slurry. International Journal of Mining Engineering and Mineral Processing, 1(2), pp.38–42. Search in Google Scholar

Wang, Z., Chen, L., Hu, M., 2023. Experiment research and mechanism analysis on rheological properties of tailings slurry. Frontiers in Earth Science, 10, 1083436. Search in Google Scholar

Wasp, E.J., Thompson, T.L., Aude, T.C., 1971. Initial economic evaluation of slurry pipeline systems. Transportation Engineering Journal of ASCE, 97(2), pp.271–279. Search in Google Scholar

Yang, Y., Wang, H., Klein, B., Wu, A., 2020. Shear‐dependent yield stress of iron ore fine tailings in two‐step flocculation process. Advances in Materials Science and Engineering, 2020(1), 6611392. Search in Google Scholar

Zeng, J.M., Zhu, H.X., Kong, J.Y. (eds.), 2013. Advances in Chemical, Material and Metallurgical Engineering. Trans Tech Publications Ltd. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Inżynieria, Wstępy i przeglądy, Inżynieria, inne