Otwarty dostęp

A simplified approach for simulating pollutant transport in small rivers with dead zones using convolution

  
21 lis 2024

Zacytuj
Pobierz okładkę

Chabokpour, J., 2020. Study of pollution transport through the rivers using aggregated dead zone and hybrid cells in series models. Int. J. Environ. Sci. Technol., 17, 4313–4330. Search in Google Scholar

Cunge, J., Holly Jr., F.M., Verwey, A., 1980. Practical Aspects of Computational River Hydraulics. Pitman, London, 420 p. Search in Google Scholar

Czernuszenko, W., Rowiński, P.M., 1997. Properties of the dead-zone model of longitudinal dispersion in rivers. J. Hydraul. Res., 35, 4, 491–504. Search in Google Scholar

Czernuszenko, W., Rowiński, P.M., Sukhodolov, A.N., 1998. Experimental and numerical validation of the dead-zone model. J. Hydraul. Res., 36, 2, 269–280. Search in Google Scholar

Deltares, 2011. Delft3D-FLOW - Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. User Manual. Hydro-Morphodynamics. Version 3.15. Search in Google Scholar

De Smedt, F., Brevis, W., Debels, P., 2005. Analytical solution for solute transport resulting from instantaneous injection in streams with transient storage. J. Hydrol., 315, 25–39. Search in Google Scholar

Eagleson, P.S., 1970. Dynamic Hydrology. McGraw Hill, INC, New York, 462 p. Search in Google Scholar

Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J., Brooks, N.H., 1979. Mixing in Inland and Coastal Waters. Academic Press, New York, 483 p. Search in Google Scholar

Fletcher, C.A., 1991. Computational Techniques for Fluid Dynamics. Vol. I. Springer Verlag, Berlin, Germany, 401 p. Search in Google Scholar

French, R.H., 1985. Open Channel Hydraulics. Mc Graw Hill INC, New York, 705 p. Search in Google Scholar

Gualtieri, C., 2010. RANS-based simulation of transverse turbulent mixing in a 2D-geometry. Environ. Fluid Mech., 10, 137–156. http://doi.org/10.1007/s10652-009-9119-6 Search in Google Scholar

HEC-RAS, 2016. River Analysis System, User’s Manual, Version 5.0, US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center. Search in Google Scholar

Hervouet, J.M., 2007. Hydrodynamics of Free Surface Flows. Wiley, Chichester, 341 p. Search in Google Scholar

Jaiswal, D.K., Kumar, A., Yadav, R.R., 2011. Analytical solution to the one-dimensional advection-diffusion equation with temporally dependent coefficients. J. Water Resource Prot., 3, 76–84. http://doi.org/10.4236/jwarp.2011.31009. Search in Google Scholar

Mc Quarrie, D.A., 2003. Mathematical Methods for Scientists and Engineers. Univ. Science Books, 1161 p. Search in Google Scholar

Krukowski, M., Kurzawski, G., 2001. Spread of the passive pollutants in lowland river. Scientific Review–Engineering and Environmental Sciences, 23, 23–36. (In Polish.) Search in Google Scholar

Lees, M.J., Camacho, L.A., Chapra, S., 2000. On the relationship of transient storage and aggregated dead zone models of longitudinal solute transport in streams. Water Resour. Res., 36, 1, 213-224. Search in Google Scholar

LeVeque, R.J., 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, 558 p. Search in Google Scholar

Mazaheri, M., Samani, J.M.V., Samani, H.M.V., 2013. Analytical solution to one-dimensional advection-diffusion equation with several point sources through arbitrary time-dependent emission rate patterns. J. Agr. Sci. Technol., 15, 1231–1245. Search in Google Scholar

MIKE 11, 2021. A modelling system for Rivers and Channels. User Guide. DHI A/S Search in Google Scholar

Ouro, P., Fraga, B., Viti, N., Angeloudis, A., Stoesser, T., Gualtieri, C., 2018. Instantaneous transport of a passive scalar in a turbulent separated flow. Environ. Fluid Mech., 18, 487–513. https://doi.org/10.1007/s10652-017-9567-3 Search in Google Scholar

Press, W.H., Teukolsky, S.A., Veterling, W.T., Flannery, B.P., 1992. Numerical Recipes in C. Cambridge University Press. Search in Google Scholar

Rowiński, P., Dysarz, T., Napiórkowski, J.J., 2004. Estimation of longitudinal dispersion and storage zone parameters. In: Greco, M., Carravetta, A., Della Morte, R. (Eds): Proc. 2nd Int. Conf. on Fluvial Hydraulics – River Flow 2004. Taylor & Francis Group, London, pp. 1201–1210. Search in Google Scholar

Runkel, R.L., 1998. One dimensional transport with inflow and storage (OTIS): a solute trans- transport model for streams and rivers. Water Resources Investigation Report 98-4018. U.S. Geological Survey. https://doi.org/10.3133/wri984018 Search in Google Scholar

Runkel, R.L., Chapra, S.C., 1993. An efficient numerical solution of the transient storage equations for solute transport in small streams. Water Resources Research, 29, 1, 211–215. Search in Google Scholar

Rutherford, J.C., 1994. River Mixing. Wiley, Chichester, UK, 348 p. Search in Google Scholar

Říha, J., Julínek, T., Kotaška, S., 2023. Simplified dispersion analysis based on dye tests at a small stream. J. Hydrol. Hydromech., 71, 3, 316–330. Search in Google Scholar

Sokáč, M., Velisková, Y., Gualtieri, C., 2018. An approximated method for 1-D simulation of pollution transport in stream with dead zones. J. Hydrol. Hydromech., 4, 437–447. Search in Google Scholar

Sokáč, M., Velísková, Y., Gualtieri, C., 2019. Application of asymmetrical statistical distributions for 1D simulation of solute transport in streams. Water, 11, 2145. https://doi.org/10.3390/w11102145 Search in Google Scholar

Szymkiewicz, R., 2010. Numerical Modeling in Open Channel Hydraulics. Springer, Dordrecht, 419 p. Search in Google Scholar

Szymkiewicz, R., Weinerowska, K., 2005. Analytical-numerical approach to solve the transport equation for steady gradually varied flow in open channel. Far East J. Appl. Math., 19, 2, 213–228. Search in Google Scholar

Szymkiewicz, R., Gąsiorowski, D., 2021. Adaptive method for solution of 1D and 2D advection-diffusion equations used in environmental engineering. Journal of Hydroinformatics, 23, 6, 1290–1311. http://doi.org/10.2166/hydro.2021.062 Search in Google Scholar

Thackston, E.L., Schnelle, K.B.J., 1970. Predicting effects of dead zones on stream mixing. J. Sanit. Eng. Div., 96, 319–331. Search in Google Scholar

Valentine, E.M., Wood, I.R., 1977. Longitudinal dispersion with dead zones. J. Hydraul. Div. ASCE, 103, 975–990. Search in Google Scholar

Valentine, E., Wood, I., 1979. Experiments in longitudinal dispersion with dead zones. J. Hydraul. Div. ASCE, 105, 999–1016. Search in Google Scholar

van Genuchten, M.Th., Leij, F.J., Skaggs, T.H., Toride, N., Bradford, S.A., Pontedeiro, E.M., 2013a. Exact analytical solutions for contaminant transport in rivers. 1. The equilibrium advection-dispersion equation. J. Hydrol. Hydromech., 61, 2, 146–160. Search in Google Scholar

van Genuchten, M.Th., Leij, F.J., Skaggs, T.H., Toride, N., Bradford, S.A., Pontedeiro, E.M., 2013b. Exact analytical solutions for contaminant transport in rivers. 2. Transient storage and decay chain solutions. J. Hydrol. Hydromech., 61, 3, 250–259. Search in Google Scholar

Velísková, Y., Sokáč, M., Moghaddam, M.B., 2023. Inverse task of pollution spreading – Localization of source in extensive open channel network structure. J. Hydrol. Hydromech., 71, 4, 475–485. Search in Google Scholar

Weinbrecht, V., 2004. Influence of dead-water zones on the dispersive mass transport in rivers. PhD Thesis. Institute of Hydromechanics, University of Karlsruhe, Germany, 129 p. Search in Google Scholar

Young, P.C., Lees, M.J., 1993. The active mixing volume: a new concept in modelling environmental systems. In: Barnett, V., Turkman, K. (Eds): Statistics for the Environment. Wiley, Chichester, pp. 3–43. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Inżynieria, Wstępy i przeglądy, Inżynieria, inne