1. bookTom 71 (2023): Zeszyt 2 (June 2023)
Informacje o czasopiśmie
Pierwsze wydanie
28 Mar 2009
Częstotliwość wydawania
4 razy w roku
Otwarty dostęp

Effects of thermal and hydrophysical properties of sandy Haplic Podzol on actual evapotranspiration of spring wheat

Data publikacji: 14 May 2023
Tom & Zeszyt: Tom 71 (2023) - Zeszyt 2 (June 2023)
Zakres stron: 125 - 131
Otrzymano: 11 Nov 2022
Przyjęty: 06 Mar 2023
Informacje o czasopiśmie
Pierwsze wydanie
28 Mar 2009
Częstotliwość wydawania
4 razy w roku

Abu-Hamdeh, N.H., Reeder, R.C., 2000. Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. Soil Sci. Soc. Am. J., 64, 4, 1285–1290. Search in Google Scholar

Acreman, M.C., Harding, R.J., Lloyd, C.R., McNeil, D.D., 2003. Evaporation characteristics of wetlands: experience from a wet grassland and a reedbed using eddy correlation measurements. Hydrol. Earth Syst. Sci., 7, 1, 11–21. Search in Google Scholar

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, FAO-Food and Agriculture Organization of the United Nations, Rome, Italy, 300, 9, D05109. Search in Google Scholar

Allen, R.G., Tasumi, M., Trezza, R., 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)–model. Journal of Irrigation and Drainage Engineering, 133, 4, 380–394. Search in Google Scholar

Arkhangelskaya, T.A., 2020. Parameters of the thermal diffusivity vs. water content function for mineral soils of different textural classes. Euras. Soil Sci., 53, 1, 39–49. Search in Google Scholar

Bachmann, J., Horton, R., Ren, T., Van Der Ploeg, R.R., 2001. Comparison of the thermal properties of four wettable and four water‐repellent soils. Soil Science Society of America Journal, 65, 6, 1675–1679. Search in Google Scholar

Bastiaanssen, W.G., Menenti, M., Feddes, R.A., Holtslag, A.A.M., 1998. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, 212, 198–212. Search in Google Scholar

Berg, A., Lintner, B.R., Findell, K.L., Malyshev, S., Loikith, P.C., Gentine, P., 2014. Impact of soil moisture–atmosphere interactions on surface temperature distribution. J. Climate, 27, 7976–7993. Search in Google Scholar

Bristow, K.L., 2002. Thermal Conductivity. Methods of Soil Analysis: Part 4. Physical Methods, 5, 1209–1226. Search in Google Scholar

Campbell, G.S., Calissendorff, C., Williams, J.H., 1991. Probe for measuring soil specific heat using a heat-pulse method. Soil Sci. Soc. Am. J., 55, 291–293. Search in Google Scholar

Cheruy, F., Dufresne, J.L., Aït Mesbah, S., Grandpeix, J.Y., Wang, F., 2017. Role of soil thermal inertia in surface temperature and soil moisture‐temperature feedback. JAMES, 9, 8, 2906–2919. Search in Google Scholar

Dirmeyer, P.A., Zeng, F.J., Ducharne, A., Morrill, J.C., Koster, R.D., 2000. The sensitivity of surface fluxes to soil water content in three land surface schemes. J. Hydrometeorol., 1, 121–134. Search in Google Scholar

Dong, Y., McCartney, J.S., Lu, N., 2015. Critical review of thermal conductivity models for unsaturated soils. Geotechnical and Geological Engineering, 33, 207–221. Search in Google Scholar

Feldman, A.F., Short Gianotti, D.J., Trigo, I.F., Salvucci, G.D., Entekhabi, D., 2020. Land-atmosphere drivers of landscape-scale plant water content loss. Geophys. Res. Lett., 47, e2020GL090331. Search in Google Scholar

Guevara-Escobar, A., Tellez, J., Gonzalez-Sosa, E., 2005. Use of digital photography for analysis of canopy closure. Agroforest. Syst. 65, 175–185. Search in Google Scholar

Haghighi, E., Short Gianotti, D.J., Akbar, R., Salvucci, G.D., Entekhabi, D., 2018. Soil and atmospheric controls on the land surface energy balance: A generalized framework for distinguishing moisture-limited and energy-limited evaporation regimes. Water Resources Res., 54, 1831–1851. Search in Google Scholar

Hanson, J.L., Edil, T.B., Yesiller, N., 2000. Thermal properties of high water content materials. ASTM Spec. Tech. Publ., 1374, 137–151. Search in Google Scholar

Hansson, K., Šimunek, J., Mizoguchi, M., Lundin, L.C., Van Genuchten, M.T., 2004. Water flow and heat transport in frozen soil: Numerical solution and freeze–thaw applications. Vadose Zone Journal, 3, 2, 693–704. Search in Google Scholar

Heitman, J. L., Horton, R., Sauer, T. J., Ren, T. S., Xiao, X., 2010. Latent heat in soil heat flux measurements. Agricultural and Forest Meteorology,150, 7–8, 1147–1153. Search in Google Scholar

IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. 4th Ed. International Union of Soil Sciences, Vienna, 234 p. Search in Google Scholar

Ji, X.B., Chen, J.M., Zhao, W.Z., Kang, E.S., Jin, B.W., Xu, S.Q., 2017. Comparison of hourly and daily Penman-Monteith grass-and alfalfa-reference evapotranspiration equations and crop coefficients for maize under arid climatic conditions. Agric. Water Manage., 192, 1–11. Search in Google Scholar

Lang, D., Zheng, J., Shi, J., Liao, F., Ma, X., Wang, W., Chen, X., Zhang, M., 2017. A comparative study of potential evapotranspiration estimation by eight methods with FAO Penman–Monteith method in southwestern China. Water, 9, 10, 734. Search in Google Scholar

Liu, S., Lu, L., Mao, D., Jia, L., 2007. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements. Hydrology and Earth Sys. Sci., 11, 2, 769–783. Search in Google Scholar

Mann, H.B., Whitney, D.R., 1947. On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18, 50–60. Search in Google Scholar

Monteith, J.L., 1965. Evaporation and environment. In: Symposia of the Society for Experimental Biology. Cambridge University Press (CUP) Cambridge, 19, 205–234. Search in Google Scholar

Minacapilli, M., Cammalleri, C., Ciraolo, G., D'Asaro, F., Iovino, M., Maltese, A., 2012. Thermal inertia modeling for soil surface water content estimation: A laboratory experiment. Soil Science Society of America Journal, 76, 1, 92–100. Search in Google Scholar

Murray, T., Verhoef, A., 2007. Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements: I. A universal approach to calculate thermal inertia. Agric. For. Meteorol., 147, 1–2, 80–87. Search in Google Scholar

Nearing, G.S., Moran, M.S., Scott, R.L., Ponce-Campos, G., 2012. Coupling diffusion and maximum entropy models to estimate thermal inertia. Remote Sensing of Environment, 119, 222–231. Search in Google Scholar

Ni, J., Cheng, Y., Wang, Q., Ng, C.W.W., Garg, A., 2019. Effects of vegetation on soil temperature and water content: Field monitoring and numerical modelling. Journal of Hydrology, 571, 494–502. Search in Google Scholar

Nolz, R., 2016. A review on the quantification of soil water balance components as a basis for agricultural water management with a focus on weighing lysimeters and soil water sensors. J. Land Manag. Food Environ., 67, 133–144. Search in Google Scholar

Nsiah, J.J., Gyamfi, C., Anornu, G.K., Odai, S.N., 2021. Estimating the spatial distribution of evapotranspiration within the Pra River Basin of Ghana. Heliyon, 7, 4, e06828. Search in Google Scholar

Oyeyemi, K.D., Sanuade, O.A., Oladunjoye, M.A., Aizebeokhai, A.P., Olaojo, A.A., Fatoba, J.O., Olofinnade, O.M., Ayara, W.A., Oladapo, O., 2018. Data on the thermal properties of soil and its moisture content. Data in Brief, 17, 900–906. Search in Google Scholar

Onwuka, B., Mang, B., 2018. Effects of soil temperature on some soil properties and plant growth. Adv. Plants Agric. Res., 8, 1, 34–37. Search in Google Scholar

Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B., Teuling A.J., 2010. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 125–161. Search in Google Scholar

Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika, 52, 3/4, 591–611. Search in Google Scholar

Soil survey laboratory methods manual. Soil survey investigations report No. 42, version 3.0, January 1996. US Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Washington, 693 p. Search in Google Scholar

Su, Z., 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Sys. Sci., 6, 1, 85–100. Search in Google Scholar

Sun, X., Zou, C.B., Wilcox, B., Stebler, E., 2019. Effect of vegetation on the energy balance and evapotranspiration in tallgrass prairie: A paired study using the eddy-covariance method. Boundary-Layer Meteorology, 170, 1, 127–160. Search in Google Scholar

Talebmorad, H., Ahmadnejad, A., Eslamian, S., Ostad-Ali-Askari, K., Singh, V.P., 2020. Evaluation of uncertainty in evapotranspiration values by FAO56-Penman-Monteith and Hargreaves-Samani methods. Int. J. Hydrology Science and Technology, 10, 2, 135–147. Search in Google Scholar

Usowicz, B., Lipiec, J., Łukowski, M., Marczewski, W., Usowicz, J., 2016. The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil Till. Res., 164, 45–51. Search in Google Scholar

Verheijen, F.G., Jeffery, S., van der Velde, M., Penížek, V., Beland, M., Bastos, A.C., Keizer, J.J., 2013. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing. Environ. Res. Lett., 8, 4, 044008. Search in Google Scholar

Verhoef, A., 2004. Remote estimation of thermal inertia and soil heat flux for bare soil. Agricultural and Forest Meteorology, 123, 3–4, 221–236. Search in Google Scholar

Wang, R., Gentine, P., Yin, J., Chen, L., Chen, J., Li, L., 2021. Long-term relative decline in evapotranspiration with increasing runoff on fractional land surfaces. Hydrology and Earth System Sciences, 25, 7, 3805–3818. Search in Google Scholar

Xiao, X., Heitman, J.L., Sauer, T.J., Ren, T., Horton, R., 2014. Sensible heat balance measurements of soil water evaporation beneath a maize canopy. Soil Sci. Soc. Am. J., 78, 2, 361–368. Search in Google Scholar

Yang, F., Zhou, G., 2011. Characteristics and modeling of evapotranspiration over a temperate desert steppe in Inner Mongolia, China. J. Hydrol., 396, 1–2, 139–147. Search in Google Scholar

Zhang, R., Tian, J., Mi, S., Su, H., He, H., Li, Z., Liu, K., 2016. The effect of vegetation on the remotely sensed soil thermal inertia and a two-source normalized soil thermal inertia model for vegetated surfaces. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 4, 1725–1735. Search in Google Scholar

Zhang, M., Lu, Y., Heitman, J., Horton, R., Ren, T., 2017. Temporal changes of soil water retention behavior as affected by wetting and drying following tillage. Soil Science Society of America Journal, 81, 6, 1288–1295. Search in Google Scholar

Zhao, J., Ren, T., Zhang, Q., Du, Z., Wang, Y., 2016. Effects of biochar amendment on soil thermal properties in the North China Plain. Soil Science Society of America Journal, 80, 5, 1157–1166. Search in Google Scholar

Polecane artykuły z Trend MD