Zacytuj

Aevermann, T., Schmude, J., 2015. Quantification and monetary valuation of urban ecosystem services in Munich, Germany. Zeitschrift für Wirtschaftsgeographie, 59, 188–200. https://doi.org/10.1515/zfw-2015-0304 Search in Google Scholar

Aryal, B., Neuner, G., 2010. Leaf wettability decreases along an extreme altitudinal gradient. Oecologia, 162, 1–9. Search in Google Scholar

Barthlott, W., Neinhuis, C., 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1–8. Search in Google Scholar

Bartoszek, K., Bednorz, E., Bielec-Bąkowska, Z., Matuszko, D., Tomczyk, A.M., Wibig, J., Wypych, A., 2022. Atlas klimatu Polski (1991–2020). Bogucki Wydawnictwo Naukowe, Poznań, Poland. Search in Google Scholar

Berezowski, T., Wassen, M., Szatyłowicz, J., Chormański, J., Ignar, S., Batelaan, O., Okruszko, T., 2018. Wetlands in flux: looking for the drivers in a central European case. Wetl. Ecol. Manag., 26, 849–863. Search in Google Scholar

Bradley, D.J., Gilbert, G.S., Parker, I.M., 2003. Susceptibility of clover species to fungal infection: the interaction of leaf surface traits and environment. Am. J. Bot., 90, 857–864. Search in Google Scholar

Brewer, C.A., Smith, W.K., 1997. Patterns of leaf surface wetness for montane and subalpine plants. Plant Cell Environ., 20, 1–11. Search in Google Scholar

Dawson, T.E., Goldsmith, G.R., 2018. The value of wet leaves. New Phytol., 219, 1156–1169. Search in Google Scholar

Dezsi, Ş., Mîndrescu, M., Petrea, D., Rai, P.K., Hamann, A., Nistor, M.-M., 2018. High-resolution projections of evapotranspiration and water availability for Europe under climate change. Int. J. Climatol., 38, 3832–3841. Search in Google Scholar

Díaz, S.M., Settele, J., Brondízio, E., Ngo, H., Guèze, M., Agard, J., Arneth, A., Balvanera, P., Brauman, K., Butchart, S., Chan, K.M.A., Garibaldi, L.A., Ichii, K., Liu, J., Subramanian, S., Midgley, G., Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., Polasky, S., Purvis, A., Razzaque, J., Reyers, B., Roy Chowdhury, R., Shin, Y.-J., Visseren-Hamakers, I., Willis, K., Zayas, C., 2019. The global assessment report on biodiversity and ecosystem services: Summary for policy makers. Inter-governmental Science-Policy Platform on Biodiversity and Ecosystem Services, IPBES secretariat, Bonn, Germany, 56 p. Search in Google Scholar

Dorr, G.J., Kempthorne, D.M., Mayo, L.C., Forster, W.A., Zabkiewicz, J.A., McCue, S.W., Belward, J.A., Turner, I.W., Hanan, J., 2014. Towards a model of spray–canopy interactions: Interception, shatter, bounce and retention of droplets on horizontal leaves. Ecol. Modell., 290, 94–101. Search in Google Scholar

Dunkerley, D., 2000. Measuring interception loss and canopy storage in dryland vegetation: a brief review and evaluation of available research strategies. Hydrol. Process., 14, 669–678. Search in Google Scholar

Ensikat, H.J., Ditsche-Kuru, P., Neinhuis, C., Barthlott, W., 2011. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J. Nanotechnol., 2, 152–161. Search in Google Scholar

Fortuniak, K., Pawlak, W., 2016. Atlas parametrów meteorologicznych na stacji pomiarowej w Kopytkowie (Biebrzański Park Narodowy) w roku 2013. Katedra Meteorologii i Klimatologii WNG UŁ, Łódź, Poland. Search in Google Scholar

Garcia-Estringana, P., Alonso-Blázquez, N., Alegre, J., 2010. Water storage capacity, stemflow and water funneling in Mediterranean shrubs. J. Hydrol., 389, 363–372. Search in Google Scholar

Gnatowski, T., Ostrowska-Ligęza, E., Kechavarzi, C., Kurzawski, G., Szatyłowicz, J., 2022. Heat capacity of drained peat soils. Appl. Sci., 12, 1579. https://doi.org/10.3390/app12031579 Search in Google Scholar

Górniak, A., 2021. Klimat województwa podlaskiego w czasie globalnego ocieplenia. Wydawnictwo Uniwersytetu w Białymstoku, Białystok, Poland. Search in Google Scholar

Grah, R.F., Wilson, C.C., 1944. Some components of rainfall interception. J. For., 42, 890–898. Search in Google Scholar

Holder, C.D., 2013. Effects of leaf hydrophobicity and water droplet retention on canopy storage capacity. Ecohydrology, 6, 483–490. Search in Google Scholar

Holder, C.D., 2012. The relationship between leaf hydrophobi-city, water droplet retention, and leaf angle of common species in a semi-arid region of the western United States. Agric. For. Meteorol., 152, 11–16. Search in Google Scholar

Holder, C.D., 2007. Leaf water repellency as an adaptation to tropical montane cloud forest environments. Biotropica, 39, 767–770. Search in Google Scholar

IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports, vol. 106. FAO, Rome. Search in Google Scholar

Jagels, R., 1994. Leaf wettability as a measure of air pollution effects. In: Percy, K.E., Cape, J.N., Jagels, R., Simpson, C.J. (Eds.): Air Pollutants and the Leaf Cuticle. Springer NATO ASI Series, vol 36. Springer, Berlin, Heidelberg, pp. 97–105. Search in Google Scholar

Klamerus-Iwan, A., 2014. Rainfall parameters affect canopy storage capacity under controlled conditions. For. Res. Pap., 75, 353–358. Search in Google Scholar

Klamerus-Iwan, A., Błońska, E., Lasota, J., Waligórski, P., Kalandyk, A., 2018. Seasonal variability of leaf water capacity and wettability under the influence of pollution in different city zones. Atmos. Pollut. Res., 9, 455–463. Search in Google Scholar

Koch, K., Hartmann, K.D., Schreiber, L., Barthlott, W., Neinhuis, C., 2006. Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environ. Exp. Bot., 56, 1–9. Search in Google Scholar

Marx, A., Kumar, R., Thober, S., Rakovec, O., Wanders, N., Zink, M., Wood, E.F., Pan, M., Sheffield, J., Samaniego, L., 2018. Climate change alters low flows in Europe under global warming of 1.5, 2, and 3°C. Hydrol. Earth Syst. Sci., 22, 1017–1032. Search in Google Scholar

Mitch, W.J., Gosselink, J.G., 2007. Wetlands. Wiley, Hoboken, New Yersey, 574 p. Search in Google Scholar

Muhammad, S., Wuyts, K., Nuyts, G., De Wael, K., Samson, R., 2020. Characterization of epicuticular wax structures on leaves of urban plant species and its association with leaf wettability. Urban For. Urban Green., 47, 126557. Search in Google Scholar

Nahlik, A.M., Fennessy, M.S., 2016. Carbon storage in US wet-lands. Nat. Commun. 7, 13835. Search in Google Scholar

Oświt, J., 1991. Łąkowe zbiorowiska roślinne bagien biebrzańskich na tle warunków siedliskowych. Grassland plant communities on Biebrza wetlands against the background of site conditions. Zeszyty Problemowe Postępów Nauk Rolniczych 372. Search in Google Scholar

Pankratz, S., Young, T., Cuevas-Arellano, H., Kumar, R., Ambrose, R.F., Suffet, I.H., 2007. The ecological value of constructed wetlands for treating urban runoff. Water Sci. Technol., 55, 63–69. https://doi.org/10.2166/wst.2007.073 Search in Google Scholar

Papierowska, E., Mazur, R., Stańczyk, T., Beczek, M., Szewińska, J., Sochan, A., Ryżak, M., Szatyłowicz, J., Bieganowski, A., 2019. Influence of leaf surface wettability on the drop splash phenomenon. Agric. For. Meteorol., 279, 107762. Search in Google Scholar

Papierowska, E., Szatyłowicz, J., Samborski, S., Szewińska, J., Różańska, E., 2020. The leaf wettability of various potato cultivars. Plants, 9, 504. Search in Google Scholar

Papierowska, E., Szporak-Wasilewska, S., Szewińska, J., Szatyłowicz, J., Debaene, G., Utratna, M., 2018. Contact angle measurements and water drop behavior on leaf surface for several deciduous shrub and tree species from a temperate zone. Trees, 32, 1253–1266. Search in Google Scholar

Pinon, J., Frey, P., Husson, C., 2006. Wettability of poplar leaves influences dew formation and infection by Melampsora larici-populina. Plant Dis., 90, 177–184. Search in Google Scholar

Rodrýìguez-Valverde, M.A., Cabrerizo-Vílchez, M.A., Rosales-López, P., Páez-Dueñas, A., Hidalgo-Álvarez, R., 2002. Contact angle measurements on two (wood and stone) non-ideal surfaces. Colloids Surf. A: Physicochem. Eng. Asp., 206, 485–495. Search in Google Scholar

Rosado, B.H.P., Holder, C.D., 2013. The significance of leaf water repellency in ecohydrological research: a review. Ecohydrology, 6, 150–161. Search in Google Scholar

Sikorska, D., Papierowska, E., Szatyłowicz, J., Sikorski, P., Suprun, K., Hopkins, R.J., 2017. Variation in leaf surface hydro-phobicity of wetland plants: the role of plant traits in water retention. Wetlands, 37, 997–1002. Search in Google Scholar

Sowińska-Świerkosz, B., García, J., 2022. What are Nature-based solutions (NBS)? Setting core ideas for concept clarification. Nature-Based Solutions, 2, 100009. Search in Google Scholar

Suliga, J., Chormański, J., Szporak-Wasilewska, S., Kleniewska, M., Berezowski, T., Griensven, A. van, Verbeiren, B., 2015. Derivation from the Landsat 7 NDVI and ground truth validation of LAI and interception storage capacity for wetland ecosystems in Biebrza Valley, Poland. In: Remote Sensing for Agriculture, Ecosystems, and Hydrology XVII. Presented at the Remote Sensing for Agriculture, Ecosystems, and Hydrology XVII, SPIE, pp. 263–275. Search in Google Scholar

Taillardat, P., Thompson, B.S., Garneau, M., Trottier, K., Friess, D.A., 2020. Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus, 10, 20190129. Search in Google Scholar

Tellechea-Robles, L.E., Salazar Ceseña, M., Bullock, S.H., Cadena-Nava, R.D., Méndez-Alonzo, R., 2020. Is leaf water-repellency and cuticle roughness linked to flooding regimes in plants of coastal wetlands? Wetlands, 40, 515–525. Search in Google Scholar

Wassen, M.J., Okruszko, T., Kardel, I., Chormanski, J., Swiatek, D., Mioduszewski, W., Bleuten, W., Querner, E.P., El Kahloun, M., Batelaan, O., 2006. Eco-hydrological functioning of the Biebrza wetlands: lessons for the conservation and restoration of deteriorated wetlands. In: Bobbink, R., Beltman, B., Verhoeven, J.T.A., Whigham, D.F. (Eds.): Wetlands: Functioning, Biodiversity Conservation, and Restoration., Ecological Studies. Springer, Berlin, Heidelberg, pp. 285–310. Search in Google Scholar

Wassen, M.J., Peeters, W.H., Olde Venterink, H., 2003. Patterns in vegetation, hydrology, and nutrient availability in an undisturbed river floodplain in Poland. Plant Ecol., 165, 27–43. Search in Google Scholar

Wohlfahrt, G., Bianchi, K., Cernusca, A., 2006. Leaf and stem maximum water storage capacity of herbaceous plants in a mountain meadow. J. Hydrol., 319, 383–390. Search in Google Scholar

Xiong, P., Chen, Z., Jia, Z., Wang, Z., Palta, J.A., Xu, B., 2018. Variability in leaf wettability and surface water retention of main species in semiarid Loess Plateau of China. Ecohydrology, 11, e2021. Search in Google Scholar

Xiong, P., Chen, Z., Yang, Q., Zhou, J., Zhang, H., Wang, Z., Xu, B., 2019. Surface water storage characteristics of main herbaceous species in semiarid Loess Plateau of China. Ecohydrology, 12, e2145. Search in Google Scholar

Xu, L., Zhu, H., Ozkan, H.E., Thistle, H.W., 2010. Evaporation rate and development of wetted area of water droplets with and without surfactant at different locations on waxy leaf surfaces. Biosyst. Eng., 106, 58–67. Search in Google Scholar

Yu, K., Pypker, T.G., Keim, R.F., Chen, N., Yang, Y., Guo, S., Li, W., Wang, G., 2012. Canopy rainfall storage capacity as affected by sub-alpine grassland degradation in the Qinghai–Tibetan Plateau, China. Hydrological Processes, 26, 3114–3123. https://doi.org/10.1002/hyp.8377 Search in Google Scholar

Zou, J., Ziegler, A.D., Chen, D., McNicol, G., Ciais, P., Jiang, X., Zheng, C., Wu, Jie, Wu, Jin, Lin, Z., He, X., Brown, L.E., Holden, J., Zhang, Z., Ramchunder, S.J., Chen, A., Zeng, Z., 2022. Rewetting global wetlands effectively reduces major greenhouse gas emissions. Nat. Geosci., 15, 627–632. Search in Google Scholar

eISSN:
1338-4333
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other