[
Andrade, J.L., 2003. Dew deposition on epiphytic bromeliad leaves: An important event in the Mexican tropical dry deciduous forest. Journal of Tropical Ecology, 19, 479–488. DOI: 10.1017/S0266467403003535
]Otwórz DOISearch in Google Scholar
[
Ashbel, D., 1949. Frequency and distribution of dew in Palestine. Geographical Review, 39, 291–297. DOI: 10.2307/211050
]Otwórz DOISearch in Google Scholar
[
Aylor, D.E., 1990. The role of intermittent wind in the dispersal of fungal pathogens. Annual Review of Phytopathology, 28, 73–92. DOI: 10.1146/annurev.py.28.090190.000445
]Otwórz DOISearch in Google Scholar
[
Beysens, D., 1995. The formation of dew. Atmos. Res., 39, 215–237. DOI: 10.1016/0169-8095(95)00015-J
]Otwórz DOISearch in Google Scholar
[
Beysens, D., 2018. Dew Water. River Publishers, Gistrup, Denmark. 305 p.
]Search in Google Scholar
[
Beysens, D., Pruvost, V., Pruvost, B., 2016. Dew observed on cars as proxy for quantitative measurements. Journal of Arid Environments, 135, 90–95. DOI: 10.1016/j.jaridenv.2016.08.014
]Otwórz DOISearch in Google Scholar
[
Bitan, A., Rubin, S., 1991. Climatic Atlas of Israel for Physical and Environmental Planning and Design. Ramot Publishing, Tel Aviv University.
]Search in Google Scholar
[
Broza, M., 1979. Dew, fog and hygroscopic food as a source of water for desert arthropods. Journal of Arid Environments, 2, 43–49. DOI: 10.1016/S0140-1963(18)31703-8
]Otwórz DOISearch in Google Scholar
[
Clus, O., Ouazzani, J., Muselli, M., Nikolayev, V.S., Sharan, G., Beysens, D., 2009. Comparison of various radiation-cooled dew condensers using computational fluid dynamics. Desali-nation, 249, 707–712. DOI: 10.1016/j.desal.2009.01.033
]Otwórz DOISearch in Google Scholar
[
Duvdevani, S., 1957. Dew research for arid agriculture. Discovery, 18, 330–334.
]Search in Google Scholar
[
Evenari, M., 1981. Ecology of the Negev Desert, a critical review of our knowledge. In: Shuval, H. (Ed.): Developments in Arid Zone Ecology and Environmental Quality. Balaban ISS, Philadelphia, Pa, pp. 1–33.
]Search in Google Scholar
[
Evenari, M., Shanan, L., Tadmor, N., 1971. The Negev, The Challenge of a Desert. Harvard Univ. Press, Cambridge, Massachusetts, 345 p.
]Search in Google Scholar
[
FAO, 1977. World Map of Desertification. Food and Agricultural Organization (FAO), Rome.
]Search in Google Scholar
[
Geiger, R., 1966. The Climate near the Ground. Harvard Univ. Press, Cambridge, Mass. 482 p.
]Search in Google Scholar
[
Hill, A., Dawson, T.E., Shelef, O., Rachmilevitch. S., 2015. The role of dew in Negev Desert plants. Oecologia, 178, 317–327. DOI: 10.1007/s00442-015-3287-5
]Otwórz DOISearch in Google Scholar
[
Iserloh, T., Fister, W., Marzen, M., Seeger, M., Kuhn, N.J., Ries, J.B., 2013. The role of wind-driven rain for soil erosion- An experimental approach. Zeitschrift fur Geomorphologie, 57, 193–201.
]Search in Google Scholar
[
Jia, R.L., Li, X.R., Liu, L.C., Gao, Y.H., Li, X.J., 2008. Responses of biological soil crusts to sand burial in revegetated area of the Tengger Desert, Northern China. Soil Biology and Biochemistry, 40, 2827–2834. DOI: 10.1016/j.soilbio.2008.07.029
]Otwórz DOISearch in Google Scholar
[
Kappen, L., Lange, O.L., Schulze, E.-D., Evenari, M., Busch-bom, V., 1979. Ecophysiological investigations on lichens of the Negev Desert, IV: Annual course of the photosynthetic production of Ramalina maciformis (Del.) Bory. Flora, 168, 85–105. DOI: 10.1016/S0367-2530-(17)31899-6
]Otwórz DOISearch in Google Scholar
[
Kidron, G.J., 2000a. Analysis of dew precipitation in three habitats within a small arid drainage basin, Negev Highlands, Israel. Atmospheric Research, 55, 257–270. DOI: 10.1016/S0169-8095(00)00063-6
]Otwórz DOISearch in Google Scholar
[
Kidron, G.J., 2000b. Dew moisture regime of endolithic and epilithic lichens inhabiting calcareous cobbles and rock out-crops, Negev Desert, Israel. Flora, 195, 146–153. DOI: 10.1016/S0367-2530(17)30962-3
]Otwórz DOISearch in Google Scholar
[
Kidron, G.J., Kronenfeld, R., 2022. Lithic cyanobacteria as bioindicators for dewless habitats within a dew desert. Flora, 288, 152027. DOI: 10.1016/j.flora.2022.152027
]Otwórz DOISearch in Google Scholar
[
Kidron, G.J., Starinsky, A., 2012. Chemical composition of dew and rain in an extreme desert (Negev): Cobbles serve as sink for nutrients. Journal of Hydrology, 420–421, 284–291. DOI: 10.1016/j.hydrol.2011.12.014
]Otwórz DOISearch in Google Scholar
[
Kidron, G.J., Temina, M., 2013. The effect of dew and fog on lithic lichens along an altitudinal gradient in the Negev Desert. Geomicrobiology Journal, 30, 281–290. DOI: 10.1080/01490451.2012.672542
]Otwórz DOISearch in Google Scholar
[
Kidron, G.J., Temina, M., 2017. Non-rainfall water input determines lichen and cyanobacteria zonation on limestone bedrock in the Negev Highlands. Flora, 229, 71–79. DOI: 10.1016/j.flora.2017.02.015
]Otwórz DOISearch in Google Scholar
[
Kidron, G.J., Zohar, M., 2010. Spatial evaporation patterns within a small drainage basin in the Negev Desert. Journal of Hydrology, 380, 376–385. DOI: 10.1016/j.jhydrol.2009.11.012
]Otwórz DOISearch in Google Scholar
[
Kidron, G.J., Yair, A., Danin, A., 2000. Dew variability within a small arid drainage basin in the Negev highlands, Israel. Quarterly Journal of the Royal Meteorological Society, 126, 63-80. DOI: 10.1002/qj.49712656204
]Otwórz DOISearch in Google Scholar
[
Kidron, G.J., Kronenfeld, R., Starinsky, A., 2016. Wind as a cooling agent: Substrate temperatures are responsible for variable lithobiont-induced weathering patterns at the west- and east-facing limestone bedrocks of the Negev. Earth Surface Processes and Landforms, 41, 2078–2084. DOI: 10.1002/esp.3973
]Otwórz DOISearch in Google Scholar
[
Kidron, G.J., Kronenfeld, R., Xiao, B., Starinsky, A., 2022. Wetdry cycles on sandy and loessial Negev soils: implications for biocrust establishment and growth? Ecohydrology, 15, e2379. DOI: 10.1002/eco.2379
]Otwórz DOISearch in Google Scholar
[
Köppen, W.F., 1936. Das Geographische System der Klimate. Gebrüder Borntraeger, Berlin.
]Search in Google Scholar
[
Lange, O.L., Schulze, E.D., Koch, W., 1970. Ecophysiological investigations on lichens of the Negev Desert, III: CO2 gas exchange and water metabolism of crustose and foliose lichens in their natural habitat during the summer dry period. Flora, 159, 525–538. DOI: 10.1016/S0367-2530(17)31062-9
]Otwórz DOISearch in Google Scholar
[
Lee, J.A., 1987. A field experiment on the role of small scale wind gustiness in aeolian sand transport. Earth Surface Processes and Landforms, 12, 331–335. DOI: 10.1002/esp.3290120311
]Otwórz DOISearch in Google Scholar
[
Lloyd, M.G., 1961. The contribution of dew to the summer water budget of Northern Idaho. Bulletin of the American Meteorological Society, 42, 572–580. DOI: 10.1175/1520-0477-42.8.572
]Otwórz DOISearch in Google Scholar
[
Matimati, I., Mausil, C.F., Raitt, L., February, E., 2013. Non-rainfall moisture interception by dwarf succulents and their relative abundance in an inland arid South African ecosystem. Ecohydrology, 6, 818–825. DOI: 10.1002/eco.1304
]Otwórz DOISearch in Google Scholar
[
Monteith, J.L., 1957. Dew. Quarterly Journal of the Royal Meteorological Society, 83, 322–341. DOI: 10.1002/gj.49708335706
]Otwórz DOISearch in Google Scholar
[
Muselli, M., Beysens, D., Mileta, M., Milimouk, I., 2009. Dew and rainwater collection in the Dalmatian Coast, Croatia. Atmospheric Research, 92, 455–463. DOI: 10.1016/j.atmosres.2009.01.004
]Otwórz DOISearch in Google Scholar
[
Oke, T.R., 1978. Boundary Layer Climates. John Wiley and Sons, New York, 372 p.
]Search in Google Scholar
[
Riksen, M.J.P.M., Goossens, D., 2007. The role of wind and splash erodsion in inland drift-sand areas in the Netherlands. Geomorphology, 88, 179–192. DOI: 10.1016/j.geomorph.2006.11.002
]Otwórz DOISearch in Google Scholar
[
Rodriguez-Navarro, C., Doehne, E., Sebastian, E., 1999. Origins of honeycomb: The role of salts and wind. GSA Bulletin, 111, 1250–1255. DOI: 10.1130/0016-7606(1999)111<1250: OOHWTR>2.3.co;2
]Otwórz DOISearch in Google Scholar
[
Rosenan, N., Gilad, M., 1985. Atlas of Israel. Meteorological Data, Sheet IV/2. Carta, Jerusalem (Israel).
]Search in Google Scholar
[
Spinoni, J., Vogt, J., Naumann, G., Carrao, H., Brbosa, P., 2015. Towards identifying areas at climatological risk of desertification using the Köppen-Geiger classification and FAO aridity index. International Journal of Climatology, 35, 2210–2222. DOI: 10.1002/joc.4124
]Otwórz DOISearch in Google Scholar
[
Tanaka, H., Shibata, M., Nakashizuka, T., 1998. Evaluation of the role of wind dispersal in tree population dynamics by using a mechanistic approach. Journal of Sustainable Forestry, 6, 155–174. DOI:10.1300/j091v06n01_10
]Otwórz DOISearch in Google Scholar
[
Takenaka, N., Soda, H., Sato, K., Terada, H., Suzue, T., Bandow, H., Maeda, Y., 2003. Difference in amounts and composition of dew from different types of dew collectors. Water Air and Soil Pollution, 147, 51–60. DOI:10.1023/A:1024573405792
]Otwórz DOISearch in Google Scholar
[
Temina, M., Kidron, G.J., 2015. The effect of dew on flint and limestone lichen communities in the Negev Desert. Flora, 213, 77–84. DOI: 10.1016/j.flora.2015.04.005
]Otwórz DOISearch in Google Scholar
[
Wang, X.P., Pan, Y.X., Hu, R., Zhang, Y.F., Zhang, H., 2014. Condensation of water vapour on moss-dominated biological soil crust, NW China. Journal of Earth System Sciences, 123, 297–305. DOI: 10.1007/S12040-013-0397-5
]Otwórz DOISearch in Google Scholar
[
Zangvil, A., 1996. Six years of dew observation in the Negev Desert, Israel. Journal of Arid Environments, 32, 361–372. DOI: 10.1006/JARE.1996.0030
]Otwórz DOISearch in Google Scholar
[
Zhuang, Y., Zhao, W., 2014. Dew variability in three habitats of a sand dune transect in a desert oasis ecotone, Northwestern China. Hydrological Processes, 28, 1399–1408. DOI: 10.1002/hyp.9675
]Otwórz DOISearch in Google Scholar