Otwarty dostęp

Sand dune vegetation-biocrust interaction as a source of spatial heterogeneity


Zacytuj

Almog, R., Yair, A., 2007. Negative and positive effects of topsoil biological crusts on water availability along a rainfall gradient in a sandy arid area. Catena, 70, 437–442.10.1016/j.catena.2006.11.012 Search in Google Scholar

Amir, R., Kinast, S., Tsoar, H, Yizhaq, H, Zaady, E., Ashkenazy, Y., 2014. The effect of wind and precipitation on vegetation and biogenic crust dynamics in the Sde-Hallamish sand dunes. J. Geophys. Res.-Earth Surface, 119, 3, 437–450. DOI: 10.1002/2013JF00294410.1002/2013JF002944 Search in Google Scholar

Ashkenazy, Y., Yizhaq, H., Tsoar, H., 2012. Sand dune mobility under climate change in the Kalahari and Australian deserts. Climatic Change, 112, 901–923.10.1007/s10584-011-0264-9 Search in Google Scholar

Ashkenazy, Y., Shilo, E., 2018. Sand dune albedo feedback. Geosciences, 8, 82. DOI: 10.3390/geosciences803008210.3390/geosciences8030082 Search in Google Scholar

Bel, G., Ashkenazy, Y., 2014. The effects of psammophilous plants on sand dune dynamics. J. Geophys. Res., 119, 1636–1650.10.1002/2014JF003170 Search in Google Scholar

Bogle, R., Redsteer, M.H., Vogel, J.M., 2015. Field measurement and analysis of climatic factors affecting dune mobility near Grand Falls on the Navajo Nation, southwestern United States. Geomorphology, 228, 41–51. DOI: 10.1016/j.geomorph.2014.08.023.10.1016/j.geomorph.2014.08.023 Search in Google Scholar

Bullard, J., 1997. A note on the use of “Fryberger method” for evaluating potential sand transport by wind. Journal of Sedimentary Research, 67, 499–501.10.1306/D42685A9-2B26-11D7-8648000102C1865D Search in Google Scholar

Chen, Y., Yizhaq, H., Mason, J.A., Zhang, X., Xu, Z., 2021. Dune bistability identified by remote sensing in a semi-arid dune field of northern China. Aeolian Research, 53, 100751. https://doi.org/10.1016/j.aeolia.2021.100751.10.1016/j.aeolia.2021.100751 Search in Google Scholar

Danin, A., 1991. Plant adaptation in desert dunes. J. Arid Environments, 21, 193–212.10.1016/S0140-1963(18)30682-7 Search in Google Scholar

Danin, A., 1996. Plants of Desert Dunes. Springer, Berlin.10.1007/978-3-642-60975-6 Search in Google Scholar

Fryberger, S.G., 1978. Dune forms and wind regime. In: McKee, E.D. (Ed.): A Study of Global Sand Seas. Vol. 1052, U.S. Geol. Surv., pp. 137–169. Search in Google Scholar

Hanoch, G., Yizhaq, H., Ashkenazy, Y., 2018. Modeling the bistability of barchan and parabolic dunes. Aeolian Research, 35, 9–18.10.1016/j.aeolia.2018.07.003 Search in Google Scholar

Herrmann, H.J., 2006. Pattern formation of dunes. Nonlinear Dynamics, 44, 315–327.10.1007/s11071-006-2016-3 Search in Google Scholar

Hesp, P.A., 2002. Fordunes and blowouts: initiation geomorphology and dynamics. Geomorphology, 48, 245–268.10.1016/S0169-555X(02)00184-8 Search in Google Scholar

Hesse, P.P., Telfer, M.W., Farebrother, W., 2017. Complexity confers stability: Climate variability, vegetation response and sand transport on longitudinal sand dunes in Australia’s deserts. Aeolian Research, 25, 45–61.10.1016/j.aeolia.2017.02.003 Search in Google Scholar

Hugenholtz, C.H., Wolfe, S.A., 2005. Biogeomorphic model of dunefield activation and stabilization on the northern Great Plains. Geomorphology, 70, 53–70.10.1016/j.geomorph.2005.03.011 Search in Google Scholar

Karnieli, A., Tsoar, H., 1995. Spectral reflectance of biogenic crust developed on desert dune sand along the Israel-Egypt border. Int. J. Remote Sensing, 16, 369–374.10.1080/01431169508954403 Search in Google Scholar

Kidron, G.J., 2015. The role of crust thickness in runoff generation from microbiotic crusts. Hydrological Processes, 29, 1783–1792.10.1002/hyp.10243 Search in Google Scholar

Kidron, G.J., Zhoar, M., 2014. Wind speed determines the transition from biocrust-stabilized to active dunes. Aeolian Research, 15, 261–267.10.1016/j.aeolia.2014.04.006 Search in Google Scholar

Kidron, G.J., Ying, W., Herzberg, M., 2017. Drought effect on biocrust resilience: High-speed winds result in crust burial and crust rupture and flaking. Science of the Total Environment, 579, 848–859.10.1016/j.scitotenv.2016.11.016 Search in Google Scholar

Kidron, G.J., Xiao, B., Benenson, I., 2020. Data variability or paradigm shift? Slow versus fast recovery of biological soil crusts-a review. Science of the Total Environment, 72, 137683. DOI: https://doi.org/10.1016/j.scitotenv.2020.13768310.1016/j.scitotenv.2020.137683 Search in Google Scholar

Kinast, S., Meron, E., Yizhaq, H., Ashkenazy, Y., 2013. Biogenic crust dynamics on sand dunes. Physical Review E, 87, 020701(R).10.1103/PhysRevE.87.020701 Search in Google Scholar

Kinast, S., 2014. Spatial and temporal dynamics of biological soil crust in arid environments. Ph.D. Thesis. Ben-Gurion University of the Negev, Beer-Sheva, Israel. Search in Google Scholar

Kok, J.F., Parteli, E.J.R., Michaels, T., Bou Karam, D., 2012. The physics of wind-blown sand and dust. Rep. Prog. Phys., 75, 106901.10.1088/0034-4885/75/10/106901 Search in Google Scholar

Lancaster, N., 2013. Climate change and aeolian processes. In: Shroder, J.F. (Ed.): Treatise on Geomorphology. Academic Press, San Diego, 13, pp. 132–151.10.1016/B978-0-12-374739-6.00349-3 Search in Google Scholar

Levin, N., Ben-Dor, G.J., Kidron, E., Yaakov, Y., 2008. Prediction of surface roughness (z0) over a stabilizing coastal dune field based on vegetation and topography. Earth Surface Processes and Landforms, 33, 1520–1541.10.1002/esp.1621 Search in Google Scholar

Mayaud, J.R., Webb, N.P., 2017. Vegetation in drylands: Effects on window and aeolian sediment transport. Land, 6, 3, 64. DOI: 10.3390/land603006410.3390/land6030064 Search in Google Scholar

McKenna Neuman, C., Maxwell, C., 2002. Temporal aspects of the abrasion of microphytic crusts under grain impact. Earth Surface Processes and Landforms, 27, 891–908.10.1002/esp.360 Search in Google Scholar

Meir, A., Tsoar, H., 1996. International borders and range ecology: The case of Bedouin transborder grazing. Human Ecology, 24, 1, 39–64.10.1007/BF02167960 Search in Google Scholar

Nathan, R., Katul, G.G., Horn, H.S., Thomas, S.M., Oren, R., Avissar, R., Pacala, S. W., Levin, S.A., 2002. Mechanisms of long-distance dispersal of seeds by wind. Nature, 418, 409–413.10.1038/nature0084412140556 Search in Google Scholar

Nield, J.M., Baas, A.C.W., 2008. The influence of different environmental and climatic conditions on vegetated aeolian dune landscape development and response. Global and Planetary Change, 64, 76–92.10.1016/j.gloplacha.2008.10.002 Search in Google Scholar

Okin, G.S., 2008. A new model of wind erosion in the presence of vegetation. J. Geophys. Res.-Earth Surface, 113, F02S10.10.1029/2007JF000758 Search in Google Scholar

Okin, G.S., 2013. Linked aeolian-vegetation systems. In: Shroder, J., Lancaster, N., Sherman, D.J., Baas, A.C.W. (Eds.): Treatise on Geomorphology. Vol. 11 of Aeolian Geomorphology. Academic Press, San Diego, CA, 2013, pp. 428–436.10.1016/B978-0-12-374739-6.00315-8 Search in Google Scholar

Puigdefábregas, J., Solé-Benet, A., Gutiérrez, L., Del Barrio, G., Boer, M., 1999. Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in Southeast Spain. Earth-Science Reviews, 48, 39–70.10.1016/S0012-8252(99)00046-X Search in Google Scholar

Pye, K., Tsoar, H., 2009. Aeolian Sand and Sand Dunes. Springer-Verlag, Berlin, Heidelberg.10.1007/978-3-540-85910-9 Search in Google Scholar

Robins, L., Greenbaum, N., Yu, L., Bookman, R., Roskin, J., 2021. High-resolution portable-osl analysis of vegetated linear dune construction in the margins of the northwestern Negev dunefield (Israel) during the late quaternary. Aeolian Research, 50, 100680.10.1016/j.aeolia.2021.100680 Search in Google Scholar

Roskin, J., Porat, N., Tsoar, H., Blumberg, D.G., Zander, A.M., 2014. Age origin and climatic controls on vegetated linear dunes in the northwestern Negev Desert (Israel). Quat. Sci. Rev., 30, 13–14, 1649–1674.10.1016/j.quascirev.2011.03.010 Search in Google Scholar

Rozenstein, O., Zaady, E., Katra, I., Karnieli, A., Admowski, J., Yizhaq, H., 2014. The effect of sand grain size on the development of cyanobacterial biocrusts. Aeolian Research, 15, 217–226.10.1016/j.aeolia.2014.08.003 Search in Google Scholar

Siegal, Z., 2009. The influence of man, droughts and climate fluctuations on the perennial vegetation in the sands of Agour natural reserve, Israel. Master’s Thesis. Ben-Gurion Univ. of the Negev, Beer-Sheva, Israel. (In Hebrew.) Search in Google Scholar

Siegal, Z., Tsoar, H., Karnileli, A., 2013. Effects of prolonged drought on the vegetation cover of sand dunes in the NW Negev desert: field survey, remote sensing and conceptual modeling. Aeolian Research, 9, 161173.10.1016/j.aeolia.2013.02.002 Search in Google Scholar

Suter-Burri, K., Gromke, C., Leonard, K., Graf, F., 2013. Spatial patterns of aeolian sediment deposition in vegetation canopies: Observations from wind tunnel experiments using colored sand. Aeolian Research, 8, 6573.10.1016/j.aeolia.2012.11.002 Search in Google Scholar

Telfer, M.W., Hesse, P.P., Perez-Fernandez, M., Bailey, R., Bajkan, S., Lancaster, N., 2017. Morphodynamics, boundary conditions and pattern evolution within a vegetated linear dune field. Geomorphology, 290, 85–100.10.1016/j.geomorph.2017.03.024 Search in Google Scholar

Thomas, D.S.G., Knight, M., Wiggs, G.F.S., 2005. Remobilization of southern African desert dune systems by twenty-first century global warming. Nature, 435, 7046, 1218–1221.10.1038/nature03717 Search in Google Scholar

Thomas, D.S.G., Wiggs, G.F.S., 2008. Aeolian systems response to global change: challenges of scale, process and temporal integration. Earth Surface Processes and Land-forms, 33, 9, 1396–1411.10.1002/esp.1719 Search in Google Scholar

Tsoar, H., 2005. Sand dunes mobility and stability in relation to climate. Physica A, 357, 1, 50–56.10.1016/j.physa.2005.05.067 Search in Google Scholar

Tsoar, H., Møller, J.T., 1986. The role of vegetation in the formation of linear dunes. Earth Surface Processes and Landforms, 14, 317–332. Search in Google Scholar

Tsoar, H., Blumberg, D.G., Wenkart, R., 2008. Formation and geomorphology of the NW Negev sand dunes. In: Breckle, S.W., Yair, A., Veste, M. (Eds.): Arid Dune Ecosystems. Vol. 200 of Ecological Studies, Springer, pp. 25–48.10.1007/978-3-540-75498-5_3 Search in Google Scholar

Tsoar, H., 2013. Critical environments: sand dunes and climate change. In: Treatiseon Geomorphology. In: Shroder, John F., Lancaster, N., Sherman, D.J., Baas, A.C.W. (Eds.): Aeolian Geomorphology, 11. Academic Press, San Diego, pp. 414–427.10.1016/B978-0-12-374739-6.00314-6 Search in Google Scholar

Veste, M., Felde, V.J.M.N.L., Warren, S.D., Pietrasiak, N., 2021. Editorial: Ecological development and functioning of biological soil crust after natural and human disturbances. Frontiers in Ecology and Evolution, 9, 713584.10.3389/fevo.2021.713584 Search in Google Scholar

Werner, B., 1995. Eolian dunes: computer simulations and attractor interpretation. Geology, 23, 1107–1110.10.1130/0091-7613(1995)023<1107:EDCSAA>2.3.CO;2 Search in Google Scholar

Xu, Z.W., Mason, J.A., Lu, H.Y., 2015. Vegetated dune morphodynamics during recent stabilization of the Mu Us dune field, north-central China. Geomorphology, 228, 486–503.10.1016/j.geomorph.2014.10.001 Search in Google Scholar

Xu, Z., Mason, J.A., Xu, C., Yi, S., Bathiany, S., Yizhaq, H., Zhou, Z., Cheng, J., Holmgren, M., Lu, H., 2020. Critical transitions in Chinese dunes during the past 12,000 years. Science Advances, 6, eaay8020. DOI: 10.1126/sciadv.aay802010.1126/sciadv.aay8020 Search in Google Scholar

Yizahq, H., Ashkenazy, Y., Tsoar, H., 2007. Why do active and stabilized dunes coexist under the same climatic conditions? Phys. Rev. Lett., 98, 188001.10.1103/PhysRevLett.98.188001 Search in Google Scholar

Yizahq, H., Ashkenazy, Y., Tsoar, H., 2009. Sand dune dynamics and climate change: A modeling approach. Journal of Geophysical Research, 114, F01023.10.1029/2008JF001138 Search in Google Scholar

Yizhaq, H., Ashkenazy, Y., Levin, N., Tsoar, H., 2013. Spatio-temporal model for the progression of transgressive dunes. Physica A, 392, 4502–4515.10.1016/j.physa.2013.03.066 Search in Google Scholar

Yizhaq, H., Ashkenazy, Y., 2016. Oscillations in biocrust-vegetation dynamics on sand dunes. Aeolian Research, 20, 35–44.10.1016/j.aeolia.2015.10.005 Search in Google Scholar

Yizhaq, H., Bel, G., 2016. Effects of quenched disorder on critical transitions in pattern-forming systems. New Journal of Physics, 18, 023004. DOI: 10.1088/1367-2630/18/2/02300410.1088/1367-2630/18/2/023004 Search in Google Scholar

Yizhaq, H., Stavi, I., Shachak, M., Bel, G., 2017. Geodiversity increases ecosystem durability to prolonged droughts. Ecological Complexity, 31, 96–103.10.1016/j.ecocom.2017.06.002 Search in Google Scholar

Yizhaq, H., Xu, Z., Askenazy, Y., 2020. The effect of wind speed averaging time on the calculation of sand drift potential: New scaling laws. Earth and Planetary Science Letters, 544, 116373.10.1016/j.epsl.2020.116373 Search in Google Scholar

Zaady, E., Karnieli, A., Shachak, M., 2007. Applying a field spectroscopy technique for assessing successional trends of biological soil crusts in a semi-arid environment. Journal of Arid Environments, 70, 463–477. https://doi.org/10.1016/j.jaridenv.2007.01.00410.1016/j.jaridenv.2007.01.004 Search in Google Scholar

Zaady, E., Katra, I., Yizhaq, H., Kinsat, S., Ashkenazy, Y., 2014. Inferring the impact of rainfall gradient on biocrusts’ developmental stage and thus on soil physical structures in sand dunes. Aeolian Research, 13, 81–89.10.1016/j.aeolia.2014.04.002 Search in Google Scholar

eISSN:
1338-4333
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other