Otwarty dostęp

Two-phase modelling for sediment water mixtures above the limit deposit velocity in horizontal pipelines


Zacytuj

Antal, S.P., Lahey Jr, R.T., Flaherty, J.E., 1991. Analysis of phase distribution in fully developed laminar bubbly two-phase flow. International Journal of Multiphase Flow, 17, 5, 635–652.10.1016/0301-9322(91)90029-3 Search in Google Scholar

Auton, T.R., 1987. The lift force on a spherical body in a rotational flow. Journal of Fluid Mechanics, 183, 199–218.10.1017/S002211208700260X Search in Google Scholar

Bagnold, R.A., 1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 225, 1160, 49–63.10.1098/rspa.1954.0186 Search in Google Scholar

Behzadi, A., Issa, R.I., Rusche, H., 2004. Modelling of dispersed bubble and droplet flow at high phase fractions. Chemical Engineering Science, 59, 4, 759–770.10.1016/j.ces.2003.11.018 Search in Google Scholar

Boyer, F., Guazzelli, É., Pouliquen, O., 2011. Unifying suspension and granular rheology. Physical Review Letters, 107, 18, 188301.10.1103/PhysRevLett.107.188301 Search in Google Scholar

Burns, A.D., Frank, T., Hamill, I., Shi, J.M., 2004. The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows. In: Proc. 5th international conference on multiphase flow, ICMF (Vol. 4, pp. 1–17). ICMF. Search in Google Scholar

Capecelatro, J., Desjardins, O., 2013. Eulerian–Lagrangian modeling of turbulent liquid–solid slurries in horizontal pipes. International Journal of Multiphase Flow, 55, 64–79.10.1016/j.ijmultiphaseflow.2013.04.006 Search in Google Scholar

Chen, L., Duan, Y., Pu, W., Zhao, C., 2009. CFD simulation of coal-water slurry flowing in horizontal pipelines. Korean Journal of Chemical Engineering, 26, 4, 1144–1154.10.1007/s11814-009-0190-y Search in Google Scholar

DallaValle, J.M., 1948. Micromeritics, the Technology of Fine Particles. 2nd Ed. Pitman Pub. Corp., New York. Search in Google Scholar

Di Felice, R., 1994. The voidage function for fluid-particle interaction systems. International Journal of Multiphase Flow, 20, 1, 153–159.10.1016/0301-9322(94)90011-6 Search in Google Scholar

Durand, R., 1953. Basic relationships of the transportation of solids in pipes-experimental research. In: Proceedings of the 5th Congress of International Association of Hydraulic Research. Minneapolis. Search in Google Scholar

Ekambara, K., Sanders, R.S., Nandakumar, K., Masliyah, J.H., 2009. Hydrodynamic simulation of horizontal slurry pipeline flow using ANSYS-CFX. Industrial & Engineering Chemistry Research, 48, 17, 8159–8171.10.1021/ie801505z Search in Google Scholar

Gidaspow, D., 1994. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic Press. Search in Google Scholar

Gillies, R.G., Shook, C.A., 1994. Concentration distributions of sand slurries in horizontal pipe flow. Particulate Science and Technology, 12, 1, 45–69.10.1080/02726359408906641 Search in Google Scholar

Gillies, R.G., Shook, C.A., 2000. Modelling high concentration settling slurry flows. The Canadian Journal of Chemical Engineering, 78, 4, 709–716.10.1002/cjce.5450780413 Search in Google Scholar

Gillies, R.G., Shook, C.A., Xu, J., 2004. Modelling heterogeneous slurry flows at high velocities. The Canadian Journal of Chemical Engineering, 82, 5, 1060–1065.10.1002/cjce.5450820523 Search in Google Scholar

Goeree, J.C., Keetels, G.H., Munts, E.A., Bugdayci, H.H., van Rhee, C., 2016. Concentration and velocity profiles of sediment-water mixtures using the drift flux model. The Canadian Journal of Chemical Engineering, 94, 6, 1048–1058.10.1002/cjce.22491 Search in Google Scholar

Gopaliya, M.K., Kaushal, D.R., 2015. Analysis of effect of grain size on various parameters of slurry flow through pipeline using CFD. Particulate Science and Technology, 33, 4, 369–384.10.1080/02726351.2014.971988 Search in Google Scholar

Gopaliya, M.K., Kaushal, D.R., 2016. Modeling of sand-water slurry flow through horizontal pipe using CFD. Journal of Hydrology and Hydromechanics, 64, 3, 261–272.10.1515/johh-2016-0027 Search in Google Scholar

Gosman, A.D., Lekakou, C., Politis, S., Issa, R.I., Looney, M.K., 1992. Multidimensional modeling of turbulent two- phase flows in stirred vessels. AIChE Journal, 38, 12, 1946–1956.10.1002/aic.690381210 Search in Google Scholar

Greenshields, C.J., 2015. OpenFOAM user guide. OpenFOAM Foundation Ltd, Version 3(1), 47 p. Search in Google Scholar

Henkes, R.A.W.M., Van Der Vlugt, F.F., Hoogendoorn, C.J., 1991. Natural-convection flow in a square cavity calculated with low-Reynolds-number turbulence models. International Journal of Heat and Mass Transfer, 34, 2, 377–388.10.1016/0017-9310(91)90258-G Search in Google Scholar

Ismail, H.M., 1952. Turbulent transfer mechanism of suspended sediment in closed channels. Trans. ASCE, 117, 1.10.1061/TACEAT.0006695 Search in Google Scholar

Jenkins, J.T., Savage, S.B., 1983. Theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. Journal of Fluid Mechanics, 130, 1, 187–202.10.1017/S0022112083001044 Search in Google Scholar

Johnson, P.C., Jackson, R., 1987. Frictional–collisional constitutive relations for granular materials, with application to plane shearing. Journal of Fluid Mechanics, 176, 67–93.10.1017/S0022112087000570 Search in Google Scholar

Kaushal, D.R., Tomita, Y., 2003. Comparative study of pressure drop in multisized particulate slurry flow through pipe and rectangular duct. International Journal of Multiphase Flow, 29, 9, 1473–1487.10.1016/S0301-9322(03)00125-3 Search in Google Scholar

Kaushal, D.R., Tomita, Y., 2007. Experimental investigation for near-wall lift of coarser particles in slurry pipeline using γ -ray densitometer. Powder Technology, 172, 3, 177–187.10.1016/j.powtec.2006.11.020 Search in Google Scholar

Kaushal, D.R., Thinglas, T., Tomita, Y., Kuchii, S., Tsukamoto, H., 2012. CFD modeling for pipeline flow of fine particles at high concentration. International Journal of Multi-phase Flow, 43, 85–100.10.1016/j.ijmultiphaseflow.2012.03.005 Search in Google Scholar

Koch, D.L., 1990. Kinetic theory for a monodisperse gas–solid suspension. Physics of Fluids A: Fluid Dynamics, 2, 10, 1711–1723.10.1063/1.857698 Search in Google Scholar

Kumar, N., Gopaliya, M.K., Kaushal, D.R., 2016. Modeling for slurry pipeline flow having coarse particles. Multiphase Science and Technology, 28, 1.10.1615/MultScienTechn.2016016085 Search in Google Scholar

Kumar, N., Gopaliya, M.K., Kaushal, D.R., 2019. Experimental investigations and CFD modeling for flow of highly concentrated iron ore slurry through horizontal pipeline. Particulate Science and Technology, 37, 2, 232–250.10.1080/02726351.2017.1364313 Search in Google Scholar

Launder, B.E., Spalding, D.B., 1974. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 2, 269–289.10.1016/0045-7825(74)90029-2 Search in Google Scholar

Legendre, D., Magnaudet, J., 1997. A note on the lift force on a spherical bubble or drop in a low-Reynolds-number shear flow. Physics of Fluids, 9, 11, 3572–3574.10.1063/1.869466 Search in Google Scholar

Legendre, D., Magnaudet, J., 1998. The lift force on a spherical bubble in a viscous linear shear flow. Journal of Fluid Mechanics, 368, 81–126.10.1017/S0022112098001621 Search in Google Scholar

Louge, M.Y., Mastorakos, E., Jenkins, J.T., 1991. The role of particle collisions in pneumatic transport. Journal of Fluid Mechanics, 231, 8, 345.10.1017/S0022112091003427 Search in Google Scholar

Lun, C.K.K., 1991. Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. Journal of Fluid Mechanics, 233, 539–559.10.1017/S0022112091000599 Search in Google Scholar

Matousek, V., 2002. Pressure drops and flow patterns in sand-mixture pipes. Experimental Thermal and Fluid Science, 26, 6–7, 693–702.10.1016/S0894-1777(02)00176-0 Search in Google Scholar

Matoušek, V., 2009. Predictive model for frictional pressure drop in settling-slurry pipe with stationary deposit. Powder Technology, 192, 3, 367–374.10.1016/j.powtec.2009.01.017 Search in Google Scholar

McLaughlin, J.B., 1991. Inertial migration of a small sphere in linear shear flows. J. Fluid Mech., 224, 261–274, 332.10.1017/S0022112091001751 Search in Google Scholar

Messa, G.V., Matoušek, V., 2020. Analysis and discussion of two fluid modelling of pipe flow of fully suspended slurry. Powder Technology, 360, 747–768.10.1016/j.powtec.2019.09.017 Search in Google Scholar

Messa, G.V., Malin, M., Malavasi, S., 2014. Numerical prediction of fully-suspended slurry flow in horizontal pipes. Powder Technology, 256, 61–70.10.1016/j.powtec.2014.02.005 Search in Google Scholar

Messa, G.V., Malin, M., Matoušek, V., 2021. Parametric study of the β-σ two-fluid model for simulating fully suspended slurry flow: effect of flow conditions. Meccanica, 5, 1–31.10.1007/s11012-021-01314-6 Search in Google Scholar

O’Brien, M.P., 1933. Review of the theory of turbulent flow and its relation to sediment transportation. Eos, Transactions American Geophysical Union, 14, 1, 487–491.10.1029/TR014i001p00487 Search in Google Scholar

Roco, M.C., Shook, C.A., 1983. Modeling of slurry flow: the effect of particle size. The Canadian Journal of Chemical Engineering, 61, 4, 494–503.10.1002/cjce.5450610402 Search in Google Scholar

Rodi, W., 1993. Turbulence Models and Their Application in Hydraulics. 2nd Ed. CRC Press. Search in Google Scholar

Rouse, H., 1937. Modern conceptions of the mechanics of fluid turbulence. Trans ASCE, 102, 463–505.10.1061/TACEAT.0004872 Search in Google Scholar

Segre, G., Silberberg, A., 1962. Behavior of macroscopic rigid spheres in Poiseuille flow. J. Fluid Mech, 14.10.1017/S0022112062001111 Search in Google Scholar

Schaan, J., Sumner, R.J., Gillies, R.G., Shook, C.A., 2000. The effect of particle shape on pipeline friction for Newtonian slurries of fine particles. The Canadian Journal of Chemical Engineering, 78, 4, 717–725.10.1002/cjce.5450780414 Search in Google Scholar

Shook, C.A., Daniel, S.M., 1965. Flow of suspensions of solids in pipelines: Part I. Flow with a stable stationary deposit. The Canadian Journal of Chemical Engineering, 43, 2, 56–61.10.1002/cjce.5450430202 Search in Google Scholar

Shook, C.A., Daniel, S.M., Scott, J.A., Holgate, J.P., 1968. Flow of suspensions in pipelines (Part 2: Two mechanisms of particle suspension). The Canadian Journal of Chemical Engineering, 46, 4, 238–244.10.1002/cjce.5450460405 Search in Google Scholar

Silin, M.O., Kobernik, S.G., Asaulenko, I.A., 1958. Druckhohenverluste von Wasser und Wasser-Boden-Gemischen in Rohrleitungen grossen Durchmessers. Dopovidi Natsional’noi Akademii nauk Ukrainy, 2, 175–177. Search in Google Scholar

Syamlal, M., Rogers, W., OBrien, T.J., 1993. MFIX documentation theory guide (No. DOE/METC-94/1004). USDOE Morgantown Energy Technology Center, WV (United States).10.2172/10145548 Search in Google Scholar

Ting, X., Miedema, S.A., Xiuhan, C., 2019. Comparative analysis between CFD model and DHLLDV model in fully-suspended slurry flow. Ocean Engineering, 181, 29–42.10.1016/j.oceaneng.2019.03.065 Search in Google Scholar

Turian, R.M., Yuan, T.F., 1977. Flow of slurries in pipelines. AIChE Journal, 23, 3, 232–243.10.1002/aic.690230305 Search in Google Scholar

Uzi, A., Levy, A., 2018. Flow characteristics of coarse particles in horizontal hydraulic conveying. Powder Technology, 326, 302–321.10.1016/j.powtec.2017.11.067 Search in Google Scholar

van Wachem, B.G.M., 2000. CFD simulations of gas-solid fluidised beds. PhD Thesis in Chemical Engineering. Delf University of Technology, Delft. Search in Google Scholar

Wilson, K.C., Clift, R., Sellgren, A., 2002. Operating points for pipelines carrying concentrated heterogeneous slurries. Powder Technology, 123, 1, 19–24.10.1016/S0032-5910(01)00423-5 Search in Google Scholar

Zhang, D.Z., Rauenzahn, R.M., 1997. A viscoelastic model for dense granular flows. Journal of Rheology, 41, 6, 1275–1298.10.1122/1.550844 Search in Google Scholar

Zheng, E., Rudman, M., Kuang, S., Chryss, A., 2020. Turbulent coarse-particle suspension flow: Measurement and modelling. Powder Technology, 373, 647–659.10.1016/j.powtec.2020.06.080 Search in Google Scholar

eISSN:
1338-4333
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other