Otwarty dostęp

Two-dimensional (2D) numerical modelling of rainfall induced overland flow, infiltration and soil erosion: comparison with laboratory rainfall-runoff simulations on a two-directional slope soil flume


Zacytuj

Abrantes, J.R.C.B., de Lima, J.L.M.P., Montenegro, A.A.A., 2015. Performance of kinematic modelling of surface runoff for intermittent rainfall on soils covered with mulch (in Portuguese). Rev. Bras. Eng. Agr. Amb., 19, 2, 166–172. https://doi.org/10.1590/1807-1929/agriambi.v19n2p166-17210.1590/1807-1929/agriambi.v19n2p166-172 Search in Google Scholar

Abrantes, J.R.C.B., Prats, S.A., Jacob, J.K., de Lima, J.L.M.P., 2018. Effectiveness of the application of rice straw mulching strips in reducing runoff and soil loss: Laboratory soil flume experiments under simulated rainfall. Soil Tillage Res., 180, 238–249. https://doi.org/10.1016/j.still.2018.03.01510.1016/j.still.2018.03.015 Search in Google Scholar

Abrantes, J.R.C.B., Moruzzi, R.B., de Lima, J.L.M.P., Silveira, A., Montenegro, A.A.A., 2019. Combining a thermal tracer with a transport model to estimate shallow flow velocities. Phys. Chem. Earth, 109, 59–69. https://doi.org/10.1016/j.pce.2018.12.00510.1016/j.pce.2018.12.005 Search in Google Scholar

Batista, P.V.G., Davies, J., Silva, M.L.N., Quinton, J.N., 2019. On the evaluation of soil erosion models: Are we doing enough? Earth Sci. Rev., 197, 102898. https://doi.org/10.1016/j.earscirev.2019.10289810.1016/j.earscirev.2019.102898 Search in Google Scholar

Beven, K.J., 2012. Rainfall-Runoff Modelling: The Primer. 2nd ed. Wiley-Blackwell, Chichester, UK.10.1002/9781119951001 Search in Google Scholar

Boardman, J., Shepheard, M.L., Walker, E., Foster, I.D.L., 2009. Soil erosion and risk-assessment for on- and off-farm impacts: A test case using the Midhurst area, West Sussex, UK. J. Environ. Manage., 90, 8, 2578–2588. https://doi.org/10.1016/j.jenvman.2009.01.01810.1016/j.jenvman.2009.01.018 Search in Google Scholar

Cao, Z., Pender, G., Wallis, S., Carling, P., 2002. Computational dam-break hydraulics over erodible sediment bed. J. Hydraul. Eng., 128, 5, 460–72. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(689)10.1061/(ASCE)0733-9429(2004)130:7(689) Search in Google Scholar

Cheng, N.S., 1997. Simplified settling velocity formula for sediment particle. J. Hydraul. Eng., 123, 2, 149–152. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(149)10.1061/(ASCE)0733-9429(1997)123:2(149) Search in Google Scholar

Christiansen, J.E., 1942. Irrigation by Sprinkling. California Agricultural Experiment Station Bulletin 670. University of California, Berkeley, CA, USA. Search in Google Scholar

Cuomo, S., Della Sala, M., Pierri, M., 2016. Experimental evidences and numerical modelling of runoff and soil erosion in flume tests. Catena, 147, 61–70. https://doi.org/10.1016/j.catena.2016.06.04410.1016/j.catena.2016.06.044 Search in Google Scholar

de Lima, J.L.M.P., Carvalho, S.C.P., de Lima, M.I.P., 2013. Rainfall simulator experiments on the importance of when rainfall burst occurs during storm events on runoff and soil loss. Z. Geomorphol., 57, 1, 91–109. https://doi.org/10.1127/0372-8854/2012/S-0009610.1127/0372-8854/2012/S-00096 Search in Google Scholar

de Lima, J.L.M.P., Santos, L., Mujtaba, B., de Lima, M.I.P., 2019. Laboratory assessment of the influence of rice straw mulch size on soil loss. Adv. Geosci., 48, 11–18. https://doi.org/10.5194/adgeo-48-11-201910.5194/adgeo-48-11-2019 Search in Google Scholar

Deng, Z.Q., de Lima J.L.M.P., Singh, V.P., 2005. Transport rate-based model for overland flow and solute transport: Parameter estimation and process simulation. J. Hydrol., 315, 1–4, 220–235. https://doi.org/10.1016/j.jhydrol.2005.03.04210.1016/j.jhydrol.2005.03.042 Search in Google Scholar

Deng, Z.Q., de Lima, J.L.M.P., Jung, H.S., 2008. Sediment transport rate-based model for rainfall-induced soil erosion. Catena, 76, 1, 54–62. https://doi.org/10.1016/j.catena.2008.09.00510.1016/j.catena.2008.09.005 Search in Google Scholar

Esteves, M., Faucher, X., Galle, S., Vauclin, M., 2000. Overland flow and infiltration modelling for small plots during unsteady rain: numerical results versus observed values. J. Hydrol., 228, 3–4, 265–282. https://doi.org/10.1016/S0022-1694(00)00155-410.1016/S0022-1694(00)00155-4 Search in Google Scholar

Flanagan, D.C., Nearing, M.A., 1995. USDA-Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation. NSERL Report No. 10. USDA-ARS, National Soil Erosion Research, West Lafayette, IN, USA. Search in Google Scholar

Gabellani, S., Silvestro, F., Rudari, R., Boni, G., 2008. General calibration methodology for a combined Horton-SCS infiltration scheme in flash flood modeling. Nat. Hazards Earth Sys. Sci., 8, 6, 1317–1327. https://doi.org/10.5194/nhess-8-1317-200810.5194/nhess-8-1317-2008 Search in Google Scholar

Garcia, R., Kahawita, R.A., 1986. Numerical solution of the St. Venant equations with the MacCormack finite-difference scheme. Int. J. Numer. Meth. Fluids, 6, 5, 259–274. https://doi.org/10.1002/fld.165006050210.1002/fld.1650060502 Search in Google Scholar

Horton, R., 1933. The role of infiltration in the hydrological cycle. Trans. Am. Geophys. Union, 14, 1, 446–460. https://doi.org/10.1029/TR014i001p0044610.1029/TR014i001p00446 Search in Google Scholar

Isidoro J.M.G.P., de Lima J.L.M.P., 2013. An analytical closed form solution for 1D kinematic overland flow under moving rainstorms. J. Hydrol. Eng., 18, 9, 1148–1156. https://doi.org/10.1061/(ASCE)HE.1943-5584.000074010.1061/(ASCE)HE.1943-5584.0000740 Search in Google Scholar

Kinnell, P.I.A., 2005. Raindrop-impact-induced erosion processes and prediction: a review. Hydrol. Proc., 19, 14, 2815–2844. https://doi.org/10.1002/hyp.578810.1002/hyp.5788 Search in Google Scholar

Liu, X., Beljadid, A., 2017. A coupled numerical model for water flow, sediment transport and bed erosion. Comput. Fluids, 154, 273–284. https://doi.org/10.1016/j.compfluid.2017.06.01310.1016/j.compfluid.2017.06.013 Search in Google Scholar

MacCormack, R.W., 1971. Numerical solution of the interaction of a shock wave with a laminar boundary layer. In: Holt M. (Eds.): Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, 8. Springer, Heidelberg, Germany. Search in Google Scholar

Martins, R., Leandro, J., Djordjević, S., 2018. Wetting and drying numerical treatments for the Roe Riemann scheme. J. Hydraul. Res., 56, 2, 256–267. https://doi.org/10.1080/00221686.2017.128925610.1080/00221686.2017.1289256 Search in Google Scholar

Montenegro, A.A.A., Abrantes, J.R.C.B., de Lima, J.L.M.P., Singh, V.P., Santos, T.E.M., 2013. Impact of mulching on soil and water dynamics under intermittent simulated rainfall. Catena, 109, 139–149. https://doi.org/10.1016/j.catena.2013.03.01810.1016/j.catena.2013.03.018 Search in Google Scholar

Montgomery, D.R., 2007. Dirt: The Erosion of Civilizations. University of California Press, Berkeley, CA, USA.10.1525/9780520933163 Search in Google Scholar

Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., Auerswald, K., Chisci, G., Torri, D., Styczen, M.E., 1998. The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf. Process. Landf., 23, 527–544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-510.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5 Search in Google Scholar

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I - a discussion of principles, J. Hydrol., 10, 3, 282–290. https://doi.org/10.1016/0022-1694(70)90255-610.1016/0022-1694(70)90255-6 Search in Google Scholar

Nearing, M.A., 2000. Evaluating soil erosion models using measured plot data: accounting for variability in the data. Earth Surf. Process. Landf., 25, 1035–1043. https://doi.org/10.1002/1096-9837(200008)25:9<1035::AIDESP121>3.0.CO;2-B Search in Google Scholar

Panagos, P., Katsoyiannis, A., 2019. Soil erosion modelling: The new challenges as the result of policy developments in Europe. Environ. Res., 172, 470–474. https://doi.org/10.1016/j.envres.2019.02.04310.1016/j.envres.2019.02.043 Search in Google Scholar

Prats, S.A., Abrantes, J.R.C.B., Crema, I.P., Keizer, J.J., de Lima, J.L.M.P., 2017. Runoff and soil erosion mitigation with sieved forest residue mulch strips under controlled laboratory conditions. Forest Ecol. Manag., 396, 102–112. https://doi.org/10.1016/j.foreco.2017.04.01910.1016/j.foreco.2017.04.019 Search in Google Scholar

Renard, K., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C., 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook 703, USDAARS, Southwest Watershed Research Center, Tucson, AZ, USA. Search in Google Scholar

Rickson, R.J., 2014. Can control of soil erosion mitigate water pollution by sediments? Sci. Total Environ., 468–469, 1187–1197. https://doi.org/10.1016/j.scitotenv.2013.05.05710.1016/j.scitotenv.2013.05.057 Search in Google Scholar

Silveira, A., Abrantes, J.R.C.B., de Lima, J.L.M.P., Lira, L.C., 2016. Modelling runoff on ceramic tile roofs using the kinematic wave equations. Water Sci. Technol., 73, 11, 2824–2831. https://doi.org/10.2166/wst.2016.14810.2166/wst.2016.148 Search in Google Scholar

Simões, N.E., 2006. Modelação bidimensional de escoamentos variáveis em superfície livre: aplicação ao estudo de cheias. Master’s Thesis. Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal. (In Portuguese.) Search in Google Scholar

Singh, V.P., de Lima, J.L.M.P., 2018. One-dimensional linear kinematic wave solution for overland flow under moving storms using the method of characteristics. J. Hydrol. Eng., 23, 7, 04018029. https://doi.org/10.1061/(ASCE)HE.1943-5584.000167610.1061/(ASCE)HE.1943-5584.0001676 Search in Google Scholar

Singh, V.P., Woolhiser, D.A., 2002. Mathematical modeling of watershed hydrology. J. Hydrol. Eng., 7, 4, 270–292. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(270)10.1061/(ASCE)1084-0699(2002)7:4(270) Search in Google Scholar

Stroosnijder, L., 2005. Measurement of erosion: Is it possible? Catena, 64, 162–173. https://doi.org/10.1016/j.catena.2005.08.00410.1016/j.catena.2005.08.004 Search in Google Scholar

USDA, 1993. Soil Survey Manual, USDA-SCS Handbook 18. U.S. Government Publishing Office, Washington, DC, USA. Search in Google Scholar

USDA, 2004. National Engineering Handbook, Section 4. U.S. Department of Agriculture, Washington, DC, USA. Search in Google Scholar

Vennard, J.K., Street, R.L., 1975. Elementary Fluid Mechanics, 5th ed. Wiley, New York, NY, USA. Search in Google Scholar

Wischmeier, W.H., Smith, D., 1978. Predicting Rainfall-Erosion Losses: A Guide to Conservation Planning. Agriculture Handbook No. 537, USDA, Washington, DC, USA. Search in Google Scholar

Woolhiser, D.A., Smith, R.E., Goodrich, D.C., 1990. KINEROS: A Kinematic Runoff and Erosion Model: Documentation and User Manual. USDA-ARS-77, West Lafayette, IN, USA. Search in Google Scholar

Wu, S., Chen, Li., Wang, N., Li, J., Li, J. 2020. Two-dimensional rainfall-runoff and soil erosion model on an irregularly rilled hillslope. J. Hydrol., 580, 124346. https://doi.org/10.1016/j.jhydrol.2019.12434610.1016/j.jhydrol.2019.124346 Search in Google Scholar

Zhang, W., Cundy, T.W., 1989. Modeling of two dimensional overland flow. Water Resour. Res., 25, 9, 2019–2035. https://doi.org/10.1029/WR025i009p0201910.1029/WR025i009p02019 Search in Google Scholar

eISSN:
1338-4333
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other