Otwarty dostęp

The influence of observed and modelled net longwave radiation on the rate of estimated potential evapotranspiration


Zacytuj

Allen, R.G., Smith, M., Perrier, A., Pereira, L.S., 1994. An update for the definition of reference evapotranspiration. ICID Bulletin, 43, 2, 35–92.Search in Google Scholar

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration – Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Rome, 300 p.Search in Google Scholar

Arellano, M.G., Irmak, S., 2016. Reference (potential) evapotranspiration. I: Comparison of temperature, radiation, and combination-based energy balance equations in humid, sub-humid, arid, semiarid and mediterranean-type climates. Journal of Irrigation and Drainage Engineering, 142, 4, 21 p.10.1061/(ASCE)IR.1943-4774.0000978Search in Google Scholar

Carmona, F., Rivas, R., Caselles, C., 2014. Estimation of daytime downward longwave radiation under clear and cloudy skies conditions over sub-humid region. Theoretical and Applied Climatology, 115, 281–295.10.1007/s00704-013-0891-3Search in Google Scholar

Carmona, F., Rivas, R., Kruse, E., 2017. Estimating daily net radiation in the FAO Penman-Monteith method. Theoretical and Applied Climatology, 129, 89–95.10.1007/s00704-016-1761-6Search in Google Scholar

Dalton, J., 1802. Experimental essays on the constitution of mixed gases: On the force of steam or vapor from water or other liquids in different temperatures, both in a Torricelli vakuum and in air; on evaporation; and on expansion of gases by heat. Manchester Literary Philosophical Society Mem. Proceedings, 5, 536–602.Search in Google Scholar

Doorenbois, J., Pruitt, W.O., 1977. Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Paper 24, Rome, 179 p.Search in Google Scholar

Duarte, H.F., Dias, N.L., Maggiotto, S.R., 2006. Assessing daytime downward longwave radiation estimates for clear and cloudy skies in Southern Brazil. Agricultural and Forest Meteorology, 139, 171–181.10.1016/j.agrformet.2006.06.008Search in Google Scholar

Fisher, J.B., DeBiase, T.A., Qi, Y., Xu, M., Goldstein, A.H., 2005. Evapotranspiration methods compared on a Sierra Nevada forest ecosystem. Environmental Modelling & Software, 20, 6, 783–796.10.1016/j.envsoft.2004.04.009Search in Google Scholar

Irmak, S., ASCE, M., Irmak, A., Jones, J.W., Howell, T.A., ASCE, M., Jacobs, J.M., Allen, R.G., ASCE, M., Hoogen-boom, G., 2003a. Predicting daily net radiation using minimum climatological data. Journal of Irrigation and Drainage Engineering, 129, 4, 256–269.10.1061/(ASCE)0733-9437(2003)129:4(256)Search in Google Scholar

Irmak, S., Irmak, A., Allen, R.G., Jones, J.W., 2003b. Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. Journal of Irrigation and Drainage Engineering, 129, 5, 336–347.10.1061/(ASCE)0733-9437(2003)129:5(336)Search in Google Scholar

Irmak, S., Mutiibwa, D., Payero, J.O., 2010. Net radiation dynamics: Performance of 20 daily net radiation models as related to model structure and intricacy in two climates. Transactions of the ASABE, 53, 4, 1059–1076.10.13031/2013.32596Open DOISearch in Google Scholar

Jensen, M.E., Burman, R.D., Allen, R.G., 1990. Evapotranspi-ration and water requirements, ASCE Manual 70, New York, 332 p.Search in Google Scholar

Kendall, M.G., 1938. A new measure of rank correlation. Biometrika, 30, 1/2, 81–93.10.1093/biomet/30.1-2.81Open DOISearch in Google Scholar

Kjaersgaard, J.H., Cuenca, R.H., Plauborg, F.L., Hansen, S., 2007a. Long-term comparisons of net radiation calculation schemes. Boundary-Layer Meteorology, 123, 417–431.10.1007/s10546-006-9151-8Search in Google Scholar

Kjaersgaard, J.H., Plauborg, F.L., Hansen, S., 2007b. Comparison of models for calculating daytime long-wave irradiance using long term data set. Agricultural and Forest Meteorology, 143, 49–63.10.1016/j.agrformet.2006.11.007Search in Google Scholar

Kjaersgaard, J.H., Cuenca, R.H., Martínez-Cob, A., Gavilán, P., plauborg, F., Mollerup, M., Hansen, S., 2009. Comparison of the performance of net radiation calculation models. Theoretical and Applied Climatology, 98, 57–66.10.1007/s00704-008-0091-8Open DOISearch in Google Scholar

Mann, H.B., 1945. Nonparametric tests against trend. Econometrica, 13, 3, 245–259.10.2307/1907187Open DOISearch in Google Scholar

Matsui, H., Osawa, K., 2015. Calibration effects of the net longwave radiation equation in Penman-type methods at Tateno, Japan. Hydrological Reseatch Letters, 9, 4, 113–117.10.3178/hrl.9.113Search in Google Scholar

Monteith, J.L., 1965. Evaporation and the environment. The state and movement pf water in living organisms. In: XIX. Symposium of the Society for Experimental Biology, Cambridge University Press, 205–234.Search in Google Scholar

Müller, J., Dohnal, M., Tesař, M., 2014. Testování parametrizací složek dlouhovlnného záření v podmínkách malého šumavského povodí. In: Hydrologie malého povodí 2014. Institute of hydrodynamics CAS, Prague, pp. 329–334.Search in Google Scholar

Penman, H.L., 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193, 120–145.10.1098/rspa.1948.0037Search in Google Scholar

Pianosi, F., Beven, K., Freer, J., Hall, J.W., Rougier, J., Stephenson, D.B., Wagener, T., 2016. Sensitivity analyses of environmental models: A systematic review with practical workflow. Environmental Modelling & Sofware, 79, 214–232.10.1016/j.envsoft.2016.02.008Search in Google Scholar

Pristley, C.H.B., Taylor, R.J., 1972. On the assessment of surface heat fluxes and evaporation using large-scale parameters. Monthly Weather Review, 100, 81–92.10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2Open DOISearch in Google Scholar

Shi, T., Guan, D., Wang, A., Wu, J., Jin, C., Han, S., 2008. Comparison of three models to estimate evapotranspiration for a temperate mixed forest. Hydrological Processes, 22, 3431–3443.10.1002/hyp.6922Open DOISearch in Google Scholar

Šípek, V., Tesař, M., 2017. Year-round estimation of soil moisture content using temporally variable soil hydraulic parameters. Hydrological Processes, 31, 1438–1452.10.1002/hyp.11121Open DOISearch in Google Scholar

Temesgen, B., Eching, S., ASCE, M., Frame, K., 2007. Comparing Net Radiation Estimation Methods: CIMIS versus Penman-Monteith. Journal of Irrigation and Drainage Engineering, 133, 265–271.10.1061/(ASCE)0733-9437(2007)133:3(265)Search in Google Scholar

Thom, A.S., Oliver, H.R., 1977. On Penman’s equation for estimating regional evaporation. Quarterly Journal of the Royal Meteorological Society, 103, 345–357.10.1002/qj.49710343610Search in Google Scholar

Votrubová, J., Dohnal, M., Vogel, T., Šanda, M., Tesař, M., 2017. Episodic runoff generation at Central European head-water catchments studied using water isotope concentration signals. Journal of Hydrology and Hydromechanics, 65, 2, 114–122.10.1515/johh-2017-0002Open DOISearch in Google Scholar

Wright, J.L., 1982. New evapotranspiration crop coefficients. Journal of Irrigation and Drainage Engineering, 108, 1, 57–74.10.1061/JRCEA4.0001372Search in Google Scholar

Yin, Y., Wu, S., Zheng, D., Yang, Q., 2008. Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China. Agricultural Water Management, 95, 77-84.10.1016/j.agwat.2007.09.002Open DOISearch in Google Scholar

Yue, S., Pilon, P., Phinney, B., Cavadias, G., 2002. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes, 16, 1807–1829.10.1002/hyp.1095Open DOISearch in Google Scholar

eISSN:
0042-790X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other