Otwarty dostęp

Comparison of alternative soil particle-size distribution models and their correlation with soil physical attributes


Zacytuj

Andersson, S., 1990. Markfysikaliska undersokningar I odlad jord, XXVI. Om mineraljordens och mullens rumsutfyllande egenskaper. En Teoretisk Studie. Swedish University of Agricultural Sciences, Uppsala, Sweden. (In Swedish.)Search in Google Scholar

Arya, L.M., Paris, J.F., 1981. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci. Soc. Am., J., 45, 6, 1023–1030.10.2136/sssaj1981.03615995004500060004xOpen DOISearch in Google Scholar

Assouline, S., Tessier, D., Bruand, A., 1998. A conceptual model of the soil water retention curve. Water Resour. Res., 34, 223–231.10.1029/97WR03039Open DOISearch in Google Scholar

Bagarello, V., Provenzano, G., Sgroi, A., 2009. Fitting particle size distribution models to data from Burundian soils for the BEST procedure and other purposes. Biosyst Eng., 104, 435–441.10.1016/j.biosystemseng.2009.07.008Open DOISearch in Google Scholar

Bah, AR., Kravchuk, O., Kirchhof, G., 2009. Fitting performance of particle-size distribution models on data derived by conventional and laser diffraction techniques. Soil Sci. Soc. Am. J., 73, 1101–1107.10.2136/sssaj2007.0433Search in Google Scholar

Banaei, M.H., 1998. Soil moisture and temperature regime map of Iran. Soil and Water Research Institute, Ministry of Agriculture, Iran.Search in Google Scholar

Bayat, H., Rastho, M., Zadeh, M.M., Vereecken, H., 2015. Particle size distribution models, their characteristics and fitting capability. J. Hydrol., 529, 872–889.10.1016/j.jhydrol.2015.08.067Search in Google Scholar

Beke, G., Lindwall, C., Entz, T., Channappa, T., 1989. Sediment and runoff watercharacteristics as influenced by cropping and tillage practices. Can. J. Soil Sci., 69, 3, 639–647.10.4141/cjss89-063Search in Google Scholar

Bird, N.R.A., Perrier, E., Rieu, M., 2000. The water retention function for a model of soil structure with pore and solid fractal distributions. Eur. J. Soil Sci., 51, 55–63.10.1046/j.1365-2389.2000.00278.xSearch in Google Scholar

Bittelli, M., Campbell, G.S., Flury, M., 1999. Characterization of particle-size distribution in soils with a fragmentation model. Soil Sci. Soc. Am. J., 63, 782–788.10.2136/sssaj1999.634782xOpen DOISearch in Google Scholar

Blake, G.R., Hartge, K.H., 1986. Bulk density. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1. 2nd Ed. Agron. Monogr. 9. ASA. Madison. WI. 375 p.Search in Google Scholar

Bolster, C.H., Hornberger, G.M., 2007. On the use of linearized Langmuir equations. Soil Sci. Soc. Am. J., 71, 1796–1806.10.2136/sssaj2006.0304Search in Google Scholar

Botula, Y.D., Cornelis, W.M., Baert, G., Mafuka, P., Van Ranst, E., 2013. Particle size distribution models for soils of the humid tropics. J. Soils Sed., 13, 686–698.10.1007/s11368-012-0635-5Search in Google Scholar

Buchan, G.D., 1989. Applicability of the simple lognormal model to particle-size distribution in soils. Soil Sci., 147, 155–161.10.1097/00010694-198903000-00001Search in Google Scholar

Buchan, G.D., Grewal, K.S., Robson, A.B., 1993. Improved models of particle- size distribution: An illustration of model comparison techniques. Soil Sci. Soc. Am. J., 57, 901–908.10.2136/sssaj1993.03615995005700040004xOpen DOISearch in Google Scholar

Carsel, R.F., Parrish, R.S., 1988. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res., 24, 755–769.10.1029/WR024i005p00755Open DOISearch in Google Scholar

Chapuis, R.P., 2012. Predicting the saturated hydraulic conductivity of soils: a review. Bull Eng Geol Environ., 71, 401–434.10.1007/s10064-012-0418-7Search in Google Scholar

Ersahin, S., Gunal, H., Kutlu, T., Yetgin, B., Coban, S., 2006. Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle size distribution. Geoderma, 136, 3, 588–597.10.1016/j.geoderma.2006.04.014Search in Google Scholar

Fredlund, M.D., Fredlund, D.G., Wilson, G.W., 2000. An equation to represent grain-size distribution. Can. Geotech. J., 37, 817–827.10.1139/t00-015Search in Google Scholar

Gee, G.W., Or, D., 2002. Particle-size analysis. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis. Part 4. SSSA Book Series No. 5. SSSA, Madison, WI. pp. 255–293.10.2136/sssabookser5.4.c12Search in Google Scholar

Ghorbani Dashtaki, S., Homaee, M., Khodaverdiloo, H., 2010. Derivation and validation of pedotransfer functions for estimating soil water retention curve using a variety of soil data. Soil Use Manage., 26, 68–74.10.1111/j.1475-2743.2009.00254.xSearch in Google Scholar

Ghorbani-Dashtaki, S., Homaee, M., Loiskandl, W., 2016. Towards using pedotransfer functions for estimating infiltration parameters. Hydrol. Sci. J., 61, 1477–1488. DOI: 10.1080/02626667.2015.1031763.10.1080/02626667.2015.1031763Open DOISearch in Google Scholar

Gimenez, D., Rawls, W.J., Pachepsky, Y., Watt, J.P.C., 2001. Prediction of a pore distribution factor from soil textural and mechanical parameters. Soil Sci., 166, 79–88.10.1097/00010694-200102000-00001Search in Google Scholar

Haverkamp, R., Parlange, J.Y., 1986. Predicting the water retention curve from a particle size distribution: 1. Sandy soils without organic matter. Soil Sci., 142, 325–339.10.1097/00010694-198612000-00001Search in Google Scholar

Hwang, S.I., 2004. Effect of texture on the performance of soil particle size distribution models. Geoderma, 123, 363–371.10.1016/j.geoderma.2004.03.003Search in Google Scholar

Hwang, S.I., Powers, S.E., 2003. Using particle-size distribution models to estimate soil hydraulic properties. Soil Sci. Soc. Am. J., 67, 1103–1112.10.2136/sssaj2003.1103Search in Google Scholar

Hwang, S.I., Lee, K.P., Lee, D.S., Powers, S.E., 2002. Models for estimating soil particle-size distributions. Soil Sci. Soc. Am. J., 66, 1143–1150.10.2136/sssaj2002.1143Open DOISearch in Google Scholar

Jabro, J.D., 1992. Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data. Am. Soc. Agric. Eng., 35, 557–560.10.13031/2013.28633Open DOISearch in Google Scholar

Jaky, J., 1944. Soil Mechanics. Egyetemi Nyomada, Budapest, Hungary.Search in Google Scholar

Khodaverdiloo, H., Samadi, A., 2011. Batch equilibrium study on sorption, desorption, and immobilization of cadmium in some semiarid-zone soils as affected by soil properties. Soil Res., 49, 5, 444–454.10.1071/SR10156Search in Google Scholar

Khodaverdiloo, H., Homaee, M., Van Genuchten, M.T., Ghorbani Dashtaki, S., 2011. Deriving and validating pedotransfer functions for some calcareous soils. J. Hydrol., 399, 93–99.10.1016/j.jhydrol.2010.12.040Search in Google Scholar

Kolev, B., Rousseva, S., Dimitrov, D., 1996. Derivation of soil water capacity parameters from standard soil texture information for Bulgarian soils. Ecol. Model., 84, 315–319.10.1016/0304-3800(95)00134-4Open DOISearch in Google Scholar

Krause, P., Boyle, D.P., Bäse, F., 2005. Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci., 5, 89–97.10.5194/adgeo-5-89-2005Search in Google Scholar

Lassabatère, L., Angulo-Jaramillo, R., Soria Ugalde, J.M, Cuenca, R., Braud, I., Haverkamp, R., 2006. Beerkan estimation of soil transfer parameters through infiltration experiments – BEST. Soil Sci. Soc. Am. J., 70, 521–532.10.2136/sssaj2005.0026Open DOISearch in Google Scholar

Liao, K., Xu, S., Zhu, Q., 2015. Development of ensemble pedotransfer functions for cation exchange capacity of soils of Qingdao in China. Soil Use Manag., 31, 483–490.10.1111/sum.12207Search in Google Scholar

Liu, J., Xu, S., Liu, H., 2003. Investigation of different models to describe soil particle- size distribution data. Adv. Water Sci., 14, 588–592.Search in Google Scholar

Liu, J., Xu, S., Liu, H., Guo, F., 2004. Application of parametric models to description of particle-size distribution in loamy soils. Acta Pedologica Sinica, 41, 375–379.Search in Google Scholar

Manrique, L.A., Jones, C.A., Dyke, P.T., 1991. Predicting cation exchange capacity from soil physical and chemical properties. Soil Sci. Soc. Am. J., 55, 787–794.10.2136/sssaj1991.03615995005500030026xOpen DOISearch in Google Scholar

Mbonimpa, M., Aubertin, M., Chapuis, R.P., Bussiere, B., 2002. Practical pedotransfer functions for estimating the saturated hydraulic conductivity. Geotech. Geol. Eng., 20, 235–259.10.1023/A:1016046214724Search in Google Scholar

Nemes, A., Wosten, J.H.M., Lilly, A., Voshaar, J.H.O., 1999. Evaluation of different procedures to interpolate particle-size distributions to achieve compatibility within soil databases. Geoderma, 90, 187–202.10.1016/S0016-7061(99)00014-2Open DOISearch in Google Scholar

Nemes, A., Schaap, M.G., Wösten, J.H.M., 2003. Functional evaluation of pedotransfer functions derived from different scales of data collection. Soil Sci. Soc. Am. J., 67, 1093–1102.10.2136/sssaj2003.1093Search in Google Scholar

Parchami-Araghi, F., Mirlatifi, S.M., GhorbaniDashtaki, S., Mahdian, M.H., 2013. Point estimation of soil water infiltration process using Artificial Neural Networks for some calcareous soils. J. Hydrol., 481, 35–47.10.1016/j.jhydrol.2012.12.007Search in Google Scholar

Patil, N.G., Singh, S.K., 2016. Pedotransfer functions for estimating soil hydraulic properties: A review. Pedosphere, 26, 4, 417–430.10.1016/S1002-0160(15)60054-6Open DOISearch in Google Scholar

Razzaghi, S., Khodaverdiloo, H., Dashtaki, S.G., 2016. Effects of long-term wastewater irrigation on soil physical properties and performance of selected infiltration models in a semi-arid region. Hydrol. Sci. J., 61, 10, 1778–1790.10.1080/02626667.2015.1051981Search in Google Scholar

Saxton, K.E., Rawls, W.J., Romberger, J.S., Pependick, R.I., 1986. Estimating generalized soil water characteristics from soil texture. Soil Sci. Soc. Am. J., 55, 1231–1238.10.2136/sssaj1986.03615995005000040054xSearch in Google Scholar

Shangguan, W., Yongjiu, D., Gutierrez, C.G., Yuan, H., 2014. Particle-size distribution models for the conversion of Chinese data to FAO/USDA system. Sci. World J. DOI: 10.1155/2014/109310.10.1155/2014/109310412101225121108Open DOISearch in Google Scholar

Shiozawa, S., Campbell, G.S., 1991. On the calculation of mean particle diameter and standard deviation from sand, silt, and clay fractions. Soil Sci., 152, 427–431.10.1097/00010694-199112000-00004Search in Google Scholar

Shirazi, M.A., Boersma, L., 1984. A unifying quantitative analysis of soil texture. Soil Sci. Soc. Am. J., 48, 142–147.10.2136/sssaj1984.03615995004800010026xOpen DOISearch in Google Scholar

Shirazi, M.A., Hart, J.W., Boersma, L., 1988. A unifying quantitative analysis of soil texture: improvement of precision and extension of scale. Soil Sci. Soc. Am. J., 52, 1, 181–190.10.2136/sssaj1988.03615995005200010032xSearch in Google Scholar

Skaggs, T.H., Arya, L.M., Shouse, P.J., Mohanty, B.P., 2001. Estimating particle size distribution from limited soil texture data. Soil Sci. Soc. Am. J., 65, 1038–1044.10.2136/sssaj2001.6541038xOpen DOISearch in Google Scholar

Tyler, S.W., Wheatcraft, S.W, 1992. Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Sci. Soc. Am. J., 56, 362–369.10.2136/sssaj1992.03615995005600020005xOpen DOISearch in Google Scholar

Vipulanandan, C., Ozgurel, H.G., 2009. Simplified relationships for particle-size distribution and permeation groutability limits for soils. J. Geotech. Geoenviron. Eng., 135, 1190–1197.10.1061/(ASCE)GT.1943-5606.0000064Search in Google Scholar

Willmott, C.J., 1981. On the validation of models. Phys. Geogr. 2, 184–194.10.1080/02723646.1981.10642213Open DOISearch in Google Scholar

Xu, G., Li, Z., Li, P., 2013. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. Catena, 101, 17–23.10.1016/j.catena.2012.09.013Search in Google Scholar

Zhao, P., Shao, M., Horton, R., 2011. Performance of soil particle-size distribution models for describing deposited soils adjacent to constructed dams in the China loess plateau. Acta Geophysica, 59, 124–138.10.2478/s11600-010-0037-2Search in Google Scholar

Zhuang, J., Jin, Y., Miyazaki, T., 2001. Estimating water retention characteristic from soil particle-size distribution using a non-similar media concept. Soil Sci., 166, 308–321.10.1097/00010694-200105000-00002Search in Google Scholar

eISSN:
0042-790X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other