Otwarty dostęp

An Optimized Snowmelt Lysimeter System for Monitoring Melt Rates and Collecting Samples for Stable Water Isotope Analysis


Zacytuj

Ala-aho, P., Tetzlaff, D., Mcnamara, J.P., Laudon, H., Kormos, P., Soulsby, C., 2017. Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach. Water Resour. Res., 2404-2418. DOI: 10.1002/2016WR019638.10.1002/2016WR019638Open DOISearch in Google Scholar

Bales, R.C., Davis, R.E., Williams, M.W., 1993. Tracer release in melting snow: diurnal and seasonal patterns. Hydrol. Process., 7, 389-401. DOI:10.1002/hyp.3360070405.10.1002/hyp.3360070405Open DOISearch in Google Scholar

Barnett, T.P., Adam, J.C., Lettenmaier, D.P., 2005. Potential impacts of a warming climate on water availability in snowdominated regions. Nature, 438, 303-309. DOI: 10.1038/nature04141.10.1038/04141Open DOISearch in Google Scholar

Beniston, M., 2003. Climatic Change in Mountain Regions: A Review of Possible Impacts. 1st Ed. Climatic Change. Kluwer Academic Publishers, Dordrecht. DOI: 10.1023/A:1024458411589.10.1023/A:1024458411589Open DOISearch in Google Scholar

Berghuijs, W.R., Woods, R.A., Hrachowitz, M., 2014. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Chang., 4, 583-586. DOI: 10.1038/NCLIMATE2246.10.1038/NCLIMATE2246Open DOISearch in Google Scholar

Bierkens, M.F.P., van Beek, L.P.H., 2009. Seasonal Predictability of European Discharge: NAO and Hydrological Response Time. J. Hydrometeorol., 10, 953-968. DOI: 10.1175/2009JHM1034.1.10.1175/2009JHM1034.1Search in Google Scholar

Burch, V.H., Forster, Felix, Schleppi, P., 1996. Zum Einfluss des Waldes auf die Hydrologie der Flysch-Einzugsgebiete des Alptals. Schweizerische Zeitschrift fur Forstwes. D, 925-938.Search in Google Scholar

Clark, I.D., Fritz, P., 1997. Environmental Isotopes in Hydrogeology. CRC Press LLC, Florida, USA.Search in Google Scholar

Cooper, L.W., 1998. Isotopic Fractionation in Snow Cover, Isotope Tracers in Catchment Hydrology. Elsevier B.V. DOI: 10.1016/B978-0-444-81546-0.50011-2.10.1016/B978-0-444-81546-0.50011-2Open DOISearch in Google Scholar

Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus, 16, 436-468. DOI: 10.3402/tellusa.v16i4.8993.10.3402/tellusa.v16i4.8993Open DOISearch in Google Scholar

Dinçer, T., Payne, B.R., Florkowski, T., Martinec, J., Tongiorgi, E., 1970. Snowmelt runoff from measurements of tritium and oxygen-18. Water Resour. Res., 6, 110. DOI: 10.1029/WR006i001p00110.10.1029/WR006i001p00110Open DOISearch in Google Scholar

Earman, S., Campbell, A.R., Phillips, F.M., Newman, B.D., 2006. Isotopic exchange between snow and atmospheric water vapor : Estimation of the snowmelt component of groundwater recharge in the southwestern United States. Journal of Geophysical Research, 111, D09302. DOI: 10.1029/2005JD006470.10.1029/2005JD006470Open DOISearch in Google Scholar

Feyen, H., Wunderli, H., Wydler, H., Papritz, A., 1999. A tracer experiment to study flow paths of water in a forest soil. J. Hydrol., 225, 155-167. DOI: 10.1016/S0022-1694(99)00159-6.10.1016/S0022-1694(99)00159-6Open DOISearch in Google Scholar

Fischer, B.M.C., Rinderer, M., Schneider, P., Ewen, T., Seibert, J., 2015. Contributing sources to baseflow in pre-alpine headwaters using spatial snapshot sampling. Hydrol. Process., 29, 5321-5336. DOI: 10.1002/hyp.10529.10.1002/hyp.10529Open DOISearch in Google Scholar

Frisbee, M.D., Phillips, F.M., Campbell, A.R., Hendrickx, J.M.H., 2010. Modified passive capillary samplers for collecting samples of snowmelt infiltration for stable isotope analysis in remote, seasonally inaccessible watersheds 1: laboratory evaluation. Hydrol. Process., 24, 7, 825-833.10.1002/hyp.7523Search in Google Scholar

Gröning, M., Lutz, H.O., Roller-Lutz, Z., Kralik, M., Gourcy, L., Pöltenstein, L., 2012. A simple rain collector preventing water re-evaporation dedicated for δ18O and δ2H analysis of cumulative precipitation samples. J. Hydrol., 448-449, 195-200. DOI: 10.1016/j.jhydrol.2012.04.041.10.1016/j.jhydrol.2012.04.041Open DOISearch in Google Scholar

Haupt, H., 1969. A Simple Snowmelt Lysimeter. Water Resour. Res., 5, 3, 714-718.10.1029/WR005i003p00714Open DOISearch in Google Scholar

Hegg, C., McArdell, B.W., Badoux, A., 2006. One hundred years of mountain hydrology in Switzerland by the WSL. Hydrol. Process., 20, 371-376. DOI: 10.1002/hyp.6055.10.1002/hyp.6055Open DOISearch in Google Scholar

Helvey, J.D., Fowler, W.B., 1980. A new method for sampling snow melt and rainfall in forests. JAWRA Journal of the American Water Resources Association, 16, 5, 938-940.10.1111/j.1752-1688.1980.tb02512.xOpen DOISearch in Google Scholar

Herrmann, A., 1978. A recording snow lysimeter. J. Glaciol., 20, 82, 209-213. Hooper, R.P., Shoemaker, C.A., 1986. A comparison of Chemical and Isotopic Hydrograph Separation. Water Resour. Res., 22, 1444-1454. DOI: 10.1029/WR022i010p01444.10.1029/WR022i010p01444Open DOISearch in Google Scholar

Huth, A.K., Leydecker, A., Sickman, J.O., Bales, R.C., 2004. A two-component hydrograph separation for three high-elevation catchments in the Sierra Nevada, California. Hydrol. Process., 18, 1721-1733. DOI: 10.1002/hyp.1414.10.1002/hyp.1414Open DOISearch in Google Scholar

Juras, R., Pavlásek, J., Vitvar, T., Šanda, M., Holub, J., Jankovec, J., Linda, M., 2016. Isotopic tracing of the outflow during artificial rain-on-snow event. J. Hydrol., 541, 1145-1154. DOI: 10.1016/j.jhydrol.2016.08.018.10.1016/j.jhydrol.2016.08.018Open DOISearch in Google Scholar

Kattelmann, R., 2000. Snowmelt lysimeters in the evaluation of snowmelt models. Ann. Glaciol., 31, 406-410. DOI: 10.3189/172756400781820048.10.3189/172756400781820048Open DOISearch in Google Scholar

Kendall, C., Caldwell, E., 1998. Chapter 2: Fundamentals of Isotope Geochemistry, Isotope Tracers in Catchment Hydrology.10.1016/B978-0-444-81546-0.50009-4Search in Google Scholar

Elsevier B.V. doi:http://dx.doi.org/10.1016/B978-0-444-81546-0.50009-4.Search in Google Scholar

Klaus, J., McDonnell, J.J., 2013. Hydrograph separation using stable isotopes: Review and evaluation. J. Hydrol., 505, 47-64. DOI: 10.1016/j.jhydrol.2013.09.006.10.1016/j.jhydrol.2013.09.006Open DOISearch in Google Scholar

Laudon, H., 2004. Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in meltwater, soil water, and runoff. Water Resour. Res., 40, 1-9. DOI: 10.1029/2003WR002455.10.1029/2003WR002455Open DOISearch in Google Scholar

Laudon, H., Hemond, H.F., Krouse, R., Bishop, K.H., 2002. Oxygen 18 fractionation during snowmelt : Implications for spring flood hydrograph separation. Water Resour. Res., 38, 11, 1-10. DOI: 10.1029/2002WR001510.10.1029/2002WR001510Open DOISearch in Google Scholar

Lee, J., Feng, X., Faiia, A.M., Posmentier, E.S., Kirchner, J., Osterhuber, R., Taylor, S., 2010. Isotopic evolution of a seasonal snowcover and its melt by isotopic exchange between liquid water and ice. Chem. Geol., 270, 126-134. DOI: 10.1016/j.chemgeo.2009.11.011.10.1016/j.chemgeo.2009.11.011Open DOISearch in Google Scholar

Lyon, S.W., Laudon, H., Seibert, J., Mörth, M., Tetzlaff, D., Bishop, K.H., 2010. Controls on snowmelt water mean transit times in northern boreal catchments. Hydrol. Process., 24, 1672-1684. DOI: 10.1002/hyp.7577.10.1002/hyp.7577Open DOISearch in Google Scholar

Martinec, J., 1987. Meltwater percolation through an alpine snowpack. In: Proc. Avalanche Formation, Movement and Effects. (Davos Symposium, September 1986). IAHS Publ. no. 162. IAHS, Wallingford, pp. 255-264.Search in Google Scholar

McDonnell, J.J., 1990. A rational for old water discharge through macroporos in a steep, humid catchment. Water Resour. Res., 26, 2821-2832. DOI: 10.1029/WR026i011p02821.10.1029/WR026i011p02821Open DOISearch in Google Scholar

Munksgaard, N.C., Wurster, C.M., Bass, A., Bird, M.I., 2012. Extreme short-term stable isotope variability revealed by continuous rainwater analysis. Hydrol. Process., 26, 3630-3634.DOI: 10.1002/hyp.9505.10.1002/hyp.9505Open DOISearch in Google Scholar

Nespor, V., Sevruk, B., 1999. Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation. J. Atmosperic Ocean. Technol., 16, 450-464.10.1175/1520-0426(1999)016<0450:EOWIEO>2.0.CO;2Search in Google Scholar

Obled, C., Rosse, B., 1977. Mathematical models of a melting snowpack at an index plot. J. Hydrol., 32, 139-163. DOI: 10.1016/0022-1694(77)90123-8.10.1016/0022-1694(77)90123-8Open DOISearch in Google Scholar

Penna, D., Ahmad, M., Birks, S.J., Bouchaou, L., Brenčič, M., Butt, S., Holko, L., Jeelani, G., Martínez, D.E., Melikadze, G., Shanley, J.B., Sokratov, S.A., Stadnyk, T., Sugimoto, A., Vreča, P., 2014a. A new method of snowmelt sampling for water stable isotopes. Hydrol. Process., 28, 5637-5644. DOI: 10.1002/hyp.10273.10.1002/hyp.10273Open DOISearch in Google Scholar

Penna, D., Engel, M., Mao, L., Dell’Agnese, A., Bertoldi, G., Comiti, F., 2014b. Tracer-based analysis of spatial and temporal variation of water sources in a glacierized catchment. Hydrol. Earth Syst. Sci. Discuss., 11, 4879-4924. DOI: 10.5194/hessd- 11-4879-2014.10.5194/hessd-11-4879-2014Open DOISearch in Google Scholar

Penna, D., Engel, M., Bertoldi, G., Comiti, F., 2017. Towards a tracer-based conceptualization of meltwater dynamics and streamflow response in a glacierized catchment. Hydrol. Earth10.5194/hess-2016-334Search in Google Scholar

Syst. Sci., 21, 23-41. DOI: 10.5194/hess-2016-334.10.5194/hess-2016-334Open DOISearch in Google Scholar

Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, P.A., Black, J., Thériault, J.M., Kucera, P., Gochis, D., Smith, C., Nitu, R., Hall, M., Ikeda, K., Gutmann, E., 2012. How Well Are We Measuring Snow ? Am. Meteorol. Soc., 811-829. DOI: 10.1175/BAMS-D-11-00052.1.10.1175/BAMS-D-11-00052.1Open DOISearch in Google Scholar

Rodhe, A., 1998. Chapter 12 - Snowmelt-Dominated Systems, Isotope Tracers in Catchment Hydrology. Elsevier B.V. DOI: 10.1016/B978-0-444-81546-0.50019-7.10.1016/B978-0-444-81546-0.50019-7Open DOISearch in Google Scholar

Šanda, M., Kulasov, A., Milena, C., 2010. Runoff formation in a small catchment at hillslope and catchment scales. Hydrol. Process., 2256, 2248-2256. DOI: 10.1002/hyp.7614.10.1002/hyp.7614Open DOISearch in Google Scholar

Šanda, M., Vitvar, T., Kulasová, A., Jankovec, J., Císlerová, M., 2014. Run-off formation in a humid , temperate headwater catchment using a combined hydrological , hydrochemical and isotopic approach (Jizera Mountains, Czech Republic). Hydrol. Process., 3229, 3217-3229. DOI: 10.1002/hyp.9847.10.1002/hyp.9847Open DOISearch in Google Scholar

Schmieder, J., Hanzer, F., Marke, T., Garvelmann, J., Warscher, M., Kunstmann, H., Strasser, U., 2016. The importance of snowmelt spatiotemporal variability for isotope-based hydrograph separation in a high-elevation catchment. Hydrol. Earth Syst. Sci., 20, 5015-5033. DOI: 10.5194/hess-20-5015-2016.10.5194/hess-20-5015-2016Open DOISearch in Google Scholar

Shanley, J.B., Sundquist, E.T., Kendall, C., 1995. Water, Energy, and Biochemical Budget Research At Sleepers River Research Watershed, Vermont. U.S. Geological Survey, Bow, New Hampshire.10.3133/ofr94475Search in Google Scholar

Singla, S., Céron, J.P., Martin, E., Regimbeau, F., Déqué, M., Habets, F., Vidal, J.P., 2012. Predictability of soil moisture and river flows over France for the spring season. Hydrol. Earth Syst. Sci., 16, 201-216. DOI: 10.5194/hess-16-201-2012.10.5194/hess-16-201-2012Open DOISearch in Google Scholar

Stähli, M., Gustafsson, D., 2006. Long-term investigations of the snow cover in a subalpine semi-forested catchment. Hydrol. Process., 20, 411-428. DOI: 10.1002/hyp.6058.10.1002/hyp.6058Open DOISearch in Google Scholar

Staudinger, M., Seibert, J., 2014. Predictability of low flow - An assessment with simulation experiments. J. Hydrol., 519, 1383-1393. DOI: 10.1016/j.jhydrol.2014.08.061.10.1016/j.jhydrol.2014.08.061Open DOISearch in Google Scholar

Stewart, I.T., 2009. Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Process., 23, 1, 78-94. DOI: 10.1002/hyp.7128.10.1002/hyp.7128Open DOISearch in Google Scholar

Stichler, W., Rauert, W., Martinec, J., 1981. Environmental isotope studies of an alpine snowpack. Nord. Hydrol., 12, 297-308.10.2166/nh.1981.0024Search in Google Scholar

Taylor, S., Feng, X., Kirchner, J.W., Osterhuber, R., 2001. Isotopic evolution of a seasonal snowpack and its melt. Water Resour. Res., 37, 759-769.10.1029/2000WR900341Search in Google Scholar

Taylor, S., Feng, X., Renshaw, C.E., Kirchner, J.W., 2002a. Isotopic evolution of snowmelt 2. Verification and parameterization of a one-dimensional model using laboratory experiments. Water Resour. Res., 38, 10. DOI: 10.1029/2001WR000815.10.1029/2001WR000815Search in Google Scholar

Taylor, S., Feng, X., Williams, M., Mcnamara, J., 2002b. How isotopic fractionation of snowmelt affects hydrograph separation. Hydrol. Process., 3690, 3683-3690. DOI: 10.1002/hyp.1232.10.1002/hyp.1232Open DOISearch in Google Scholar

Tekeli, A.E., Şorman, A.A., Şensoy, A., Şorman, A.Ü., Bonta, J., Schaefer, G., 2005. Snowmelt lysimeters for real-time snowmelt studies in Turkey. Turkish J. Eng. Environ. Sci., 29, 29-40.Search in Google Scholar

Unnikrishna, P. V., McDonnell, J.J., Kendall, C., 2002. Isotope variations in a Sierra Nevada snowpack and their relation to meltwater. J. Hydrol., 260, 38-57.10.1016/S0022-1694(01)00596-0Search in Google Scholar

von Freyberg, J., Studer, B., Kirchner, J.W., 2017. A lab in the field : high-frequency analysis of water quality and stable isotopes in stream water and precipitation. Hydrol. Earth Syst. Sci., 21, 1721-1739. DOI: 10.5194/hess-21-1721-2017.10.5194/hess-21-1721-2017Open DOISearch in Google Scholar

Würzer, S., Wever, N., Juras, R., Lehning, M., Jonas, T., 2017. Modelling liquid water transport in snow under rain-on-snow conditions - considering preferential flow. Hydrol. Earth Syst. Sci., 21, 1741-1756. DOI: 10.5194/hess-21-1741-2017.10.5194/hess-21-1741-2017Open DOISearch in Google Scholar

Zappa, M., Bernhard, L., Fundel, F., Jörg-Hess, S., 2012. Vorhersage und Szenarien von Schnee- und Wasserressourcen im Alpenraum. Forum für Wissen 19-27.Search in Google Scholar

eISSN:
0042-790X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other