Zacytuj

Ajdary, K., Singh, D.K., Singh, A.K., Khanna, M., 2007. Modelling of nitrogen leaching from experimental onion field under drip irrigation. Agr. Water Manage., 89, 15–28.10.1016/j.agwat.2006.12.014Search in Google Scholar

Armbruster, M., Seegert, J., Feger, K.H., 2004. Effects of changes in tree species composition on water flow dynamics – model applications and their limitations. Plant Soil, 264, 13–24.10.1023/B:PLSO.0000047716.45245.23Search in Google Scholar

Bachmann, J., Deurer, M., Arye, G., 2007. Modeling water movement in heterogeneous water-repellent soil: 1. Development of a contact angle–dependent water-retention model. Vadose Zone J., 6, 436–445.10.2136/vzj2006.0060Search in Google Scholar

Bauters, T.W.J., DiCarlo, D.A., Steenhuis, T.S., Parlange, J.-Y., 2000. Soil water content dependent wetting front characteristics in sands. J. Hydrology, 231–232, 244–254.10.1016/S0022-1694(00)00198-0Search in Google Scholar

Breuer, L., Eckhardt, K., Frede, H.G., 2003. Plant parameter values for models in temperate climates. Ecol. Model., 169, 237–293.10.1016/S0304-3800(03)00274-6Search in Google Scholar

Bughici, T., Wallach, R., 2016. Formation of soil-water repellency in olive orchards and its influence on infiltration pattern. Geoderma, 262, 1–11.10.1016/j.geoderma.2015.08.002Search in Google Scholar

Cerdà, A., Doerr, S.H., 2007. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrol. Process., 21, 17, 2325–2336.10.1002/hyp.6755Search in Google Scholar

Chau, H.W., Biswas, A., Vujanovic, V., Si, B.C., 2014. Relationship between the severity, persistence of soil water repellency and the critical soil water content in water repellent soils. Geoderma, 221–222, 113–120.10.1016/j.geoderma.2013.12.025Search in Google Scholar

Clothier, B.E., Vogeler, I., Magesan, G.N., 2000. The breakdown of water repellency and solute transport through a hydrophobic soil. J. Hydrol., 231–232, 255–264.10.1016/S0022-1694(00)00199-2Search in Google Scholar

Czachor, H., Doerr, S.H., Lichner, L., 2010.Water retention of repellent and subcritical repellent soils: new insights from model and experimental investigations. J. Hydrol., 380, 104–111.10.1016/j.jhydrol.2009.10.027Search in Google Scholar

Debano, L.F., 1975. Infiltration, evaporation, and water movement as related to water repellency 1. In: Gardner, W.R., Moldenhauer, W.C. (Eds.): Soil Conditioners. SSSA Spec. Publ. 7. SSSA, Madison, WI., pp. 155–164.10.2136/sssaspecpub7.c15Search in Google Scholar

Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water repellent sandy soil, 1. Potential and actual water repellency. Water Resour. Res., 30, 2507–2517.10.1029/94WR00749Open DOISearch in Google Scholar

Diamantopoulos, E., Durner, W., 2013. Physically-based model of soil hydraulic properties accounting for variable contact angle and its effect on hysteresis. Adv. Water Resour., 59, 169–180.10.1016/j.advwatres.2013.06.005Search in Google Scholar

Diamantopoulos, E., Durner, W., Reszkowska, A., Bachmann, J., 2013. Effect of soil water repellency on soil hydraulic properties estimated under dynamic conditions J. Hydrol., 486, 175–186.10.1016/j.jhydrol.2013.01.020Search in Google Scholar

Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydrogeomorphological significance. Earth Sci. Rev., 51, 33–65.10.1016/S0012-8252(00)00011-8Open DOISearch in Google Scholar

Feddes, R.A., Kowalik, P.J., Zaradny, H., 1978. Simulation of Field Water Use and Crop Yield. John Wiley & Sons, New York. Fischer, E.M., Knutti, R., 2014. Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett., 41, 2, 547–554.10.1002/2013GL058499Search in Google Scholar

Ganz, C., Bachmann, J., Noell, U., Diujnisveld, W.H.M., Lamparter, A., 2014. Hydraulic modeling and in situ electrical resistivity tomography to analyze ponded infiltration into a water repellent sand. Vadose Zone J., 13, 1, 1–14.10.2136/vzj2013.04.0074Open DOISearch in Google Scholar

Gee, G.W., Or, D., 2002. Particle-size analysis. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis. Part 4 – Physical Methods. SSSA Book Series, No. 5. SSSA, Madison, WI, USA, pp. 1381–1402.Search in Google Scholar

González, M.G., Ramos, T.B., Carlesso, R., Paredes, P., Petry, M.T., Martins, J.D., Aires, N.P., Pereira, L.S., 2015. Modelling soil water dynamics of full and deficit drip irrigated maize cultivated under a rain shelter. Biosyst. Eng., 132, 1–18. DOI: 10.1016/j.biosystemseng.2015.02.001.10.1016/j.biosystemseng.2015.02.001Open DOISearch in Google Scholar

Hallett, P.D., Baumgartl, T., Young, I.M., 2001. Subcritical water repellency of aggregates from a range of soil management practices. Soil Sci. Soc. Am. J., 65, 184–190.10.2136/sssaj2001.651184xOpen DOISearch in Google Scholar

Hardie, A.H., Lisson, S., Doyle, R.B., Cothing, W.E., 2013. Evaluation of rapid approaches for determining the soil water retention function and saturated hydraulic conductivity in a hydrologically complex soil. Soil Till. Res., 130, 99–108.10.1016/j.still.2013.02.012Search in Google Scholar

Hopmans, J.W., Šimůnek, J., Romano, N., Durner, W., 2002. Inverse methods. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis. Part 4. SSSA Book Series, No. 5. SSSA, Madison, WI, pp. 963–1008.10.2136/sssabookser5.4.c40Search in Google Scholar

Huang, M., Barbour, S.L., Elshorbagy, A., Zettl, J.D., Si, B.C., 2011. Water availability and forest growth in coarse-textures soils. Canad. J. Soil Sci., 91, 199–210.10.4141/cjss10012Search in Google Scholar

IUSS, 2014. World reference base for soil resources. FAO, Rome.Search in Google Scholar

Jarvis, N., Etana, A., Stagnitti, F., 2008. Water repellency, nearsaturated infiltration and preferential solute transport in a macroporous clay soil. Geoderma, 143, 223–230.10.1016/j.geoderma.2007.11.015Search in Google Scholar

Jordán, A., Zavala, L.M., Mataix-Solera, J., Doerr, S.H., 2013. Soil water repellency: origin, assessment and geomorphological consequences. Catena, 108, 1–5.10.1016/j.catena.2013.05.005Search in Google Scholar

Kandelous, M.M., Šimůnek, J., van Genuchten, M.Th, Malek, K., 2011. Soil water content distributions between two emitters of a subsurface drip irrigation system. Soil Soil Sci. Soc. Am. J., 75, 488–497.10.2136/sssaj2010.0181Open DOISearch in Google Scholar

Lamparter, A., Bachmann, J., Deurer, M., Woche, S.K., 2010. Applicability of ethanol for measuring intrinsic hydraulic properties of sand with various water repellency levels. Vadose Zone J., 9, 445–450.10.2136/vzj2009.0079Open DOISearch in Google Scholar

Leitner, S., Minixhofer, P., Inselsbacher, E., Keiblinger, K.M., Zimmermann, M., Zechmeister-Boltenstern, S., 2017. Shortterm soil mineral and organic nitrogen fluxes during moderate and severe drying-rewetting events. Appl. Soil Ecol., 114, 28–33.10.1016/j.apsoil.2017.02.014Search in Google Scholar

Lemmnitz, C., Kuhnert, M., Bens, O., Güntner, A., Merz, B., Hüttl, R.F., 2008. Spatial and temporal variations of actual soil water repellency and their influence on surface runoff. Hydrol. Process., 22, 1976–1984.10.1002/hyp.6782Search in Google Scholar

Lenhard, R.J., Parker, J.C. 1992. Modeling multiphase fluid hysteresis and comparing results to laboratory investigations. In: Genuchten, M.Th., Leij, F.J., Lund, L.J. (Eds.); Proc. Intl. Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. University of California, Riverside, CA.Search in Google Scholar

Letey, J., Carrillo, M.L.K., Pang, X.P., 2000. Approaches to characterize the degree of water repellency. J. Hydrol., 231–232, 61–65.10.1016/S0022-1694(00)00183-9Search in Google Scholar

Leue, M., H.H. Gerke, Godow, S.C., 2015. Droplet infiltration and organic matter composition of intact crack and biopore surfaces from clay-illuvial horizons. J. Plant Nutr. Soil Sci., 178, 250–260.10.1002/jpln.201400209Search in Google Scholar

Liu, H., Ju, Z., Bachmann, J., Horton, R., Ren, T., 2012. Moisture-dependent wettability of artificial hydrophobic soils and its relevance for soil water desorption curves. Soil Sci. Soc. Am. J., 76, 342–349.10.2136/sssaj2011.0081Open DOISearch in Google Scholar

Monteith, J.L., 1981. Evaporation and surface temperature. Q. J. R. Meteorol. Soc., 107, 1–27.10.1002/qj.49710745102Search in Google Scholar

Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 3, 513–521.10.1029/WR012i003p00513Open DOISearch in Google Scholar

Nakhaei, M., Šimůnek, J., 2014. Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code. J. Hydrol. Hydromech., 62, 7–15.10.2478/johh-2014-0008Search in Google Scholar

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models. Part I. A discussion of principles. J. Hydrol., 10, 282–90.10.1016/0022-1694(70)90255-6Search in Google Scholar

Nieber, J., Bauters, T.W.J., Steenhuis, T.S., Parlange, J.Y., 2000. Numerical simulation of experimental gravity-driven unstable flow in water repellent sand. J. Hydrol., 231–232, 295–307.10.1016/S0022-1694(00)00202-XSearch in Google Scholar

Ritsema, C.J., Dekker, L.W., 2000. Preferential flow in water repellent sandy soils: principles and modeling implications. J. Hydrol., 231–232, 308–319.10.1016/S0022-1694(00)00203-1Search in Google Scholar

Ritsema, C., Dekker, L.W., Hendrickx, J.M.H., Hamminga, W., 1993. Preferential flow mechanism in a water repellent sandy soil. Water Resour. Res., 29, 2183–2193.10.1029/93WR00394Open DOISearch in Google Scholar

Schaap, M.G., Leij, F.J., van Genuchten, M.T., 2001. ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol., 251, 163–176.10.1016/S0022-1694(01)00466-8Search in Google Scholar

Schindler, U., Durner, W., von Unold, Georg., Müller, L., 2010. Evaporation method for measuring unsaturated hydraulic properties of soils: extending the measurement range. Soil Sci. Soc. Am. J., 74, 1071–1083.10.2136/sssaj2008.0358Open DOISearch in Google Scholar

Schwen, A., Zimmermann, M., Bodner, G., 2014. Vertical variations of soil hydraulic properties within two soil profiles and its relevance for soil water simulations. J. Hydrol., 516, 169–181.10.1016/j.jhydrol.2014.01.042Search in Google Scholar

Schwen, A., Zimmermann, M., Leitner, S., Woche, S.K., 2015. Soil Water Repellency and its Impact on Hydraulic Characteristics in a Beech Forest under Simulated Climate Change. Vadose Zone J., 14, 12, 1–11.10.2136/vzj2015.06.0089Search in Google Scholar

Shang, J., Flury, M., Harsh, J.B., Zollars, R.L., 2008. Comparison of different methods to measure contact angles of soil colloids. J. Colloid Interface Sci., 328, 299–307.10.1016/j.jcis.2008.09.039Search in Google Scholar

Šimůnek, J., van Genuchten, M.Th., 1996. Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion. Water Resour. Res., 32, 2683–2696.10.1029/96WR01525Open DOISearch in Google Scholar

Šimůnek, J., van Genuchten, M.Th., 1997. Parameter estimation of soil hydraulic properties from multiple tension disc infiltrometer data. Soil Sci., 162, 383–398.10.1097/00010694-199706000-00001Search in Google Scholar

Šimůnek, J., Angulo-Jaramillo, R., Schaap, M.G., Vandervaere, J.P., van Genuchten, M.T., 1998. Using an inverse method to estimate the hydraulic properties of crusted soils from tension disc infiltrometer data. Geoderma, 86, 61–81.10.1016/S0016-7061(98)00035-4Open DOISearch in Google Scholar

Šimůnek, J., van Genuchten, M.Th., Šejna, M., 2016. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J., 15, 7. DOI: 10.2136/vzj2016.04.003310.2136/vzj2016.04.0033Open DOISearch in Google Scholar

Stocker, T.F., Qin, D., Plattner, G.-K. Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), 2013. Climate Change. The Physical Science Basis. Summary for Policymakers. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge and New York, pp. 1–30.Search in Google Scholar

Stoffregen, H., Wessolek, G., 2014. Scaling the hydraulic functions of a water repellent sandy soil. Int. Agrophys., 28, 349–358.10.2478/intag-2014-0025Search in Google Scholar

Subedi, S., Kawamoto, K., Komatsu, T., Moldrup, P., Wollesen de Jonge, L., Müller, K., Clothier, B., 2013. Contact angles of water-repellent porous media inferred by tensiometer-TDR probe measurement under controlled wetting and drying cycles. Soil Sci. Soc. Am. J., 77, 1944–1954.10.2136/sssaj2013.05.0203Search in Google Scholar

van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898.10.2136/sssaj1980.03615995004400050002xOpen DOISearch in Google Scholar

Vereecken, H., Schnepf, A., Hopmans, J.W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M.H., Amelung, W., Aitkenhead, M., Allison, S.D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H.J., Heppell, J., Horn, R., Huisman, J.A., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E.C., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S.E.A.T.M., Vogel, H.J., Vrugt, J.A., Wöhling, T., Young, I.M., 2016. Modeling soil processes: Review, key challenges, and new perspectives. Vadose Zone J., 15, 5. DOI: 10.2136/vzj2015.09.0131.10.2136/vzj2015.09.0131Open DOISearch in Google Scholar

Watson, C.L., Letey, J., 1970. Indices for characterizing soilwater repellency based upon contact angle-surface tension relationships. Soil Sci. Soc. Am. Proc., 34, 841–844.10.2136/sssaj1970.03615995003400060011xOpen DOISearch in Google Scholar

eISSN:
0042-790X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Inżynieria, Wstępy i przeglądy, inne