This work is licensed under the Creative Commons Attribution 4.0 International License.
Adrian, S. R., & Hubley, R. (2023). RepeatMasker [Online]. https://www.repeatmasker.org/AdrianS. R.HubleyR.2023RepeatMasker [Online]https://www.repeatmasker.org/Search in Google Scholar
Alford, D. V. (2012). Chapter 4 - Miscellaneous Pests. In D. V. Alford (Ed.), Pests of Ornamental Trees, Shrubs and Flowers (2nd ed., pp. 87–112). Academic Press.AlfordD. V.2012Chapter 4 - Miscellaneous PestsInAlfordD. V.(Ed.),Pests of Ornamental Trees, Shrubs and Flowers2nd ed.87112Academic PressSearch in Google Scholar
Alonge, M., Lebeigle, L., Kirsche, M., Jenike, K., Ou, S., Aganezov, S., Wang, X., Lippman, Z. B., Schatz, M. C., & Soyk, S. (2022). Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biology, 23(1), 258. https://doi.org/10.1186/s13059-022-02758-2AlongeM.LebeigleL.KirscheM.JenikeK.OuS.AganezovS.WangX.LippmanZ. B.SchatzM. C.SoykS.2022Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editingGenome Biology231258https://doi.org/10.1186/s13059-022-02758-2Search in Google Scholar
Álvarez-Ortega, S., Brito, J. A., & Subbotin, S. A. (2019). Multigene phylogeny of root-knot nematodes and molecular characterization of Meloidogyne nataliei Golden, Rose & Bird, 1981 (Nematoda: Tylenchida). Scientific Reports, 9(1), 11788. https://doi.org/10.1038/s41598-019-48283-9Álvarez-OrtegaS.BritoJ. A.SubbotinS. A.2019Multigene phylogeny of root-knot nematodes and molecular characterization of Meloidogyne nataliei Golden, Rose & Bird, 1981 (Nematoda: Tylenchida)Scientific Reports9111788https://doi.org/10.1038/s41598-019-48283-9Search in Google Scholar
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0042BankevichA.NurkS.AntipovD.GurevichA. A.DvorkinM.KulikovA. S.LesinV. M.NikolenkoS. I.PhamS.PrjibelskiA. D.PyshkinA. V.SirotkinA. V.VyahhiN.TeslerG.AlekseyevM. A.PevznerP. A.2012SPAdes: A new genome assembly algorithm and its applications to single-cell sequencingJournal of Computational Biology195455477https://doi.org/10.1089/cmb.2012.0042Search in Google Scholar
Brinkman, H., Goossens, J. J. M., & Van Riel, H. R. (1996). Comparative host suitability of selected crop plants to Meloidogyne chitwoodi. Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz, 69(5), 127–129.BrinkmanH.GoossensJ. J. M.Van RielH. R.1996Comparative host suitability of selected crop plants to Meloidogyne chitwoodiAnzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz695127129Search in Google Scholar
Castagnone-Sereno, P., Danchin, E. G. J., Perfus-Barbeoch, L., & Abad, P. (2013). Diversity and evolution of root-knot nematodes, genus Meloidogyne: New insights from the genomic era. Annual Review of Phytopathology, 51, 203–220. https://doi.org/10.1146/annurev-phyto-082712-102316Castagnone-SerenoP.DanchinE. G. J.Perfus-BarbeochL.AbadP.2013Diversity and evolution of root-knot nematodes, genus Meloidogyne: New insights from the genomic eraAnnual Review of Phytopathology51203220https://doi.org/10.1146/annurev-phyto-082712-102316Search in Google Scholar
Challis, R. B., Mark, R., Richards, E., Rajan, J., & Cochrane, G. (2023). Filtering a Dataset [Online]. https://blobtoolkit.genomehubs.org/blobtools2/blobtools2-tutorials/filtering-a-dataset/ChallisR. B.MarkR.RichardsE.RajanJ.CochraneG.2023Filtering a Dataset [Online]https://blobtoolkit.genomehubs.org/blobtools2/blobtools2-tutorials/filtering-a-dataset/Search in Google Scholar
Dai, D., Xie, C., Zhou, Y., Bo, D., Zhang, S., Mao, S., Liao, Y., Cui, S., Zhu, Z., Wang, X., Li, F., Peng, D., Zheng, J., & Sun, M. (2023). Unzipped chromo-some-level genomes reveal allopolyploid nematode origin pattern as unreduced gamete hybridization. Nature Communications, 14(1), 7156. https://doi.org/10.1038/s41467-023-42861-5DaiD.XieC.ZhouY.BoD.ZhangS.MaoS.LiaoY.CuiS.ZhuZ.WangX.LiF.PengD.ZhengJ.SunM.2023Unzipped chromo-some-level genomes reveal allopolyploid nematode origin pattern as unreduced gamete hybridizationNature Communications1417156https://doi.org/10.1038/s41467-023-42861-5Search in Google Scholar
Elling, A. A. (2013). Major emerging problems with minor Meloidogyne species. Phytopathology, 103(10), 1092–1102. https://doi.org/10.1094/PHYTO-03-13-0081-REllingA. A.2013Major emerging problems with minor Meloidogyne speciesPhytopathology1031010921102https://doi.org/10.1094/PHYTO-03-13-0081-RSearch in Google Scholar
EPPO. (2023). Meloidogyne fallax Distribution [Online]. https://gd.eppo.int/taxon/MELGFA/distributionEPPO2023Meloidogyne fallax Distribution [Online]https://gd.eppo.int/taxon/MELGFA/distributionSearch in Google Scholar
Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit, A. F. (2020). RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences, 117(17), 9451–9457. https://doi.org/10.1073/pnas.1921008117FlynnJ. M.HubleyR.GoubertC.RosenJ.ClarkA. G.FeschotteC.SmitA. F.2020RepeatModeler2 for automated genomic discovery of transposable element familiesProceedings of the National Academy of Sciences1171794519457https://doi.org/10.1073/pnas.1921008117Search in Google Scholar
Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt089GurevichA.SavelievV.VyahhiN.TeslerG.2013QUAST: Quality assessment tool for genome assembliesBioinformatics29810721075https://doi.org/10.1093/bioinformatics/btt089Search in Google Scholar
Illumina. (2023). Illumina NovaSeq 6000 [Online]. https://emea.illumina.com/systems/sequencing-platforms/novaseq.htmlIllumina2023Illumina NovaSeq 6000 [Online]https://emea.illumina.com/systems/sequencing-platforms/novaseq.htmlSearch in Google Scholar
Krueger, F. (2012). Trim Galore [Online]. https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/KruegerF.2012Trim Galore [Online]https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/Search in Google Scholar
Laetsch, D., & Blaxter, M. (2017). BlobTools: Interrogation of genome assemblies [version 1; peer review: 2 approved with reservations]. F1000Research, 6, 1504. https://doi.org/10.12688/f1000research.12609.1LaetschD.BlaxterM.2017BlobTools: Interrogation of genome assemblies [version 1; peer review: 2 approved with reservations]F1000Research61504https://doi.org/10.12688/f1000research.12609.1Search in Google Scholar
Lee, S., Nguyen, L. T., Hayes, B. J., & Ross, E. (2021). Prowler: A novel trimming algorithm for Oxford Nanopore sequence data. Bioinformatics. https://doi.org/10.1093/bioinformatics/btab744LeeS.NguyenL. T.HayesB. J.RossE.2021Prowler: A novel trimming algorithm for Oxford Nanopore sequence dataBioinformaticshttps://doi.org/10.1093/bioinformatics/btab744Search in Google Scholar
Manni, M., Berkeley, M. R., Seppey, M., & Zdobnov, E. M. (2021). BUSCO: Assessing genomic data quality and beyond. Current Protocols, 1(11), e243. https://doi.org/10.1002/cphc.243ManniM.BerkeleyM. R.SeppeyM.ZdobnovE. M.2021BUSCO: Assessing genomic data quality and beyondCurrent Protocols111e243https://doi.org/10.1002/cphc.243Search in Google Scholar
Nischwitz, C., Skantar, A., Handoo, Z. A., Hult, M. N., Schmitt, M. E., & McClure, M. A. (2013). Occurrence of Meloidogyne fallax in North America, and molecular characterization of M. fallax and M. minor from U.S. Golf Course Greens. Plant Disease, 97(11), 1438–1444. https://doi.org/10.1094/PDIS-04-13-0361-RENischwitzC.SkantarA.HandooZ. A.HultM. N.SchmittM. E.McClureM. A.2013Occurrence of Meloidogyne fallax in North America, and molecular characterization of M. fallax and M. minor from U.S. Golf Course GreensPlant Disease971114381444https://doi.org/10.1094/PDIS-04-13-0361-RESearch in Google Scholar
Oxford Nanopore Technologies. (2023). PromethION [Online]. https://nanoporetech.com/products/promethionOxford Nanopore Technologies2023PromethION [Online]https://nanoporetech.com/products/promethionSearch in Google Scholar
QIAGEN. (2015). QIAGEN Genomic DNA Handbook [Online]. https://www.qiagen.com/us/resources/download.aspx?id=d2b85b26-16dd-4259-a3a7-a08cbd2a08a3&lang=enQIAGEN2015QIAGEN Genomic DNA Handbook [Online]https://www.qiagen.com/us/resources/download.aspx?id=d2b85b26-16dd-4259-a3a7-a08cbd2a08a3&lang=enSearch in Google Scholar
Santo, G., O’Bannon, J., Finley, A., & Golden, A. (1981). Occurrence and host range of a new root-knot nematode (Meloidogyne chitwoodi) in the Pacific Northwest. Plant Disease, 64(10), 951–952. https://doi.org/10.1094/PD-64-951SantoG.O’BannonJ.FinleyA.GoldenA.1981Occurrence and host range of a new root-knot nematode (Meloidogyne chitwoodi) in the Pacific NorthwestPlant Disease6410951952https://doi.org/10.1094/PD-64-951Search in Google Scholar
Shen, W., Le, S., Li, Y., & Hu, F. (2016). SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLOS ONE, 11(8), e0163962. https://doi.org/10.1371/journal.pone.0163962ShenW.LeS.LiY.HuF.2016SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulationPLOS ONE118e0163962https://doi.org/10.1371/journal.pone.0163962Search in Google Scholar
Shen, W., Sipos, B., & Zhao, L. (2024). SeqKit2: A Swiss army knife for sequence and alignment processing. iMeta, e191. https://doi.org/10.1002/imt2.191ShenW.SiposB.ZhaoL.2024SeqKit2: A Swiss army knife for sequence and alignment processingiMetae191https://doi.org/10.1002/imt2.191Search in Google Scholar
Van Der Beek, J. G., & Karssen, G. (1997). Interspecific hybridization of meiotic parthenogenetic Meloidogyne chitwoodi and M. fallax. Phytopathology, 87(10), 1061–1066. https://doi.org/10.1094/PHYTO.1997.87.10.1061Van Der BeekJ. G.KarssenG.1997Interspecific hybridization of meiotic parthenogenetic Meloidogyne chitwoodi and M. fallaxPhytopathology871010611066https://doi.org/10.1094/PHYTO.1997.87.10.1061Search in Google Scholar
Waeyenberge, L., & Moens, M. (2001). Meloidogyne chitwoodi and M. fallax in Belgium. Nematologia Mediterranea, 29(1), 91–97.WaeyenbergeL.MoensM.2001Meloidogyne chitwoodi and M. fallax in BelgiumNematologia Mediterranea2919197Search in Google Scholar
Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0WoodD. E.LuJ.LangmeadB.2019Improved metagenomic analysis with Kraken 2Genome Biology201257https://doi.org/10.1186/s13059-019-1891-0Search in Google Scholar
Xu, M., Guo, L., Gu, S., Wang, O., Zhang, R., Peters, B. A., Fan, G., Liu, X., Xu, X., Deng, L., & Zhang, Y. (2020). TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads. GigaScience, 9(12), giaa144. https://doi.org/10.1093/gigascience/giaa144XuM.GuoL.GuS.WangO.ZhangR.PetersB. A.FanG.LiuX.XuX.DengL.ZhangY.2020TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long readsGigaScience912giaa144https://doi.org/10.1093/gigascience/giaa144Search in Google Scholar