Zacytuj

Abd El-Aziz, M.H., and Khalil, M.S. 2020. Antiviral and Anti-nematicidal potentials of chitosan. Journal of Plant Science and Phytopathology 4: 055–059. doi: 10.29328/journal.jpsp.1001051 Abd El-AzizM.H. KhalilM.S. 2020 Antiviral and Anti-nematicidal potentials of chitosan Journal of Plant Science and Phytopathology 4 055 059 10.29328/journal.jpsp.1001051 Open DOISearch in Google Scholar

Alfy, H., Ghareeb, R.Y., Soltan, E.L., and Farag, D.A. 2020. Impact of chitosan nanoparticles as insecticide and nematicide against Spodoptera littoralis, Locusta migratoria, and Meloidogyne incognita. Plant Cell Biotechnology Molecular Biology 21:126–40. AlfyH. GhareebR.Y. SoltanE.L. FaragD.A. 2020 Impact of chitosan nanoparticles as insecticide and nematicide against Spodoptera littoralis, Locusta migratoria, and Meloidogyne incognita Plant Cell Biotechnology Molecular Biology 21 126 40 Search in Google Scholar

Asif, M., Ahmad, F., Tariq, M., Khan, A., Ansari, T., Khan, F., and Siddiqui, A.M. 2017. Potential of chitosan alone and in combination with agricultural wastes against the root-knot nematode, Meloidogyne incognita infesting eggplant Journal of plant protection research. 57(3):288–295. doi:10.1515/jppr-2017-0041. AsifM. AhmadF. TariqM. KhanA. AnsariT. KhanF. SiddiquiA.M. 2017 Potential of chitosan alone and in combination with agricultural wastes against the root-knot nematode, Meloidogyne incognita infesting eggplant Journal of plant protection research 57 3 288 295 10.1515/jppr-2017-0041 Open DOISearch in Google Scholar

Budi, S., Suliasih, B.A., and Rahmawati, I. 2020. Size-controlled chitosan nanoparticles prepared using ionotropic gelation. Science Asia. 46(4): 45761. doi:10.2306/scienceasia1513-1874.2020.059. BudiS. SuliasihB.A. RahmawatiI. 2020 Size-controlled chitosan nanoparticles prepared using ionotropic gelation Science Asia 46 4 45761 10.2306/scienceasia1513-1874.2020.059 Open DOISearch in Google Scholar

Dai Lam, T., Hoang, V.D., Le Ngoc Lien, N..N., and Dien, P.G. 2006. Synthesis and characterization of chitosan nanoparticles used as drug carrier. Journal of Chemistry 44(1):105–9. Dai LamT. HoangV.D. Le Ngoc LienN..N. DienP.G. 2006 Synthesis and characterization of chitosan nanoparticles used as drug carrier Journal of Chemistry 44 1 105 9 Search in Google Scholar

Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh, D.F., Javanmard, R., Dokhani, A., Khorasani, S., and Mozafari, M.R. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 10(2):57. doi: 10.3390/pharmaceutics12060594. DanaeiM. DehghankholdM. AtaeiS. HasanzadehD.F. JavanmardR. DokhaniA. KhorasaniS. MozafariM.R. 2018 Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems Pharmaceutics 10 2 57 10.3390/pharmaceutics12060594 Open DOISearch in Google Scholar

Ganaie, M.A. and Khan, T.A. 2011. Studies on the interactive effect of Meloidogyne incognita and Fusarium solani on Lycopersicon esculentum Mill. International Journal of Botany 7(2): 205–208. doi: 10.3390/md1211532. GanaieM.A. KhanT.A. 2011 Studies on the interactive effect of Meloidogyne incognita and Fusarium solani on Lycopersicon esculentum Mill International Journal of Botany 7 2 205 208 10.3390/md1211532 Open DOISearch in Google Scholar

Gonzalez, M.C., Garcia-Brand, A.J., Quezada, V., Reyes, L.H., Muñoz-Camargo, C., and Cruz, J.C. 2021. Highly efficient synthesis of type B gelatin and low molecular weight chitosan nanoparticles: Potential applications as bioactive molecule carriers and cell-penetrating agents. Polymers 13(23):4078. doi: 10.3390/polym13234078. GonzalezM.C. Garcia-BrandA.J. QuezadaV. ReyesL.H. Muñoz-CamargoC. CruzJ.C. 2021 Highly efficient synthesis of type B gelatin and low molecular weight chitosan nanoparticles: Potential applications as bioactive molecule carriers and cell-penetrating agents Polymers 13 23 4078 10.3390/polym13234078 Open DOISearch in Google Scholar

Gortari, M.C., and Hours, R.A. 2008. Fungal chitinases and their biological role in the antagonism onto nematode eggs. A review. Mycological Progress. 7(4):221–38. GortariM.C. HoursR.A. 2008 Fungal chitinases and their biological role in the antagonism onto nematode eggs. A review Mycological Progress 7 4 221 38 Search in Google Scholar

Goy, R.C., Morais, S.T., and Assis, O.B. 2016. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revisit Brasileira de Farmacognosia. 122–7. doi: 10.1016/j.bjp.2015.09.010. GoyR.C. MoraisS.T. AssisO.B. 2016 Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth Revisit Brasileira de Farmacognosia 122 7 10.1016/j.bjp.2015.09.010 Open DOISearch in Google Scholar

Heal, C.M., Bruton, B.D., and Davis, R.M. 1989. Influence of Glomus intraradices and soil phosphorus on Meloidogyne incognita infecting Cucumis melo. Journal of Nematology 21(1):69. HealC.M. BrutonB.D. DavisR.M. 1989 Influence of Glomus intraradices and soil phosphorus on Meloidogyne incognita infecting Cucumis melo Journal of Nematology 21 1 69 Search in Google Scholar

Hidangmayum, A., Dwivedi, P., Katiyar, D., and Hemantaranjan, A. 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants 25(2): 313–26. HidangmayumA. DwivediP. KatiyarD. HemantaranjanA. 2019 Application of chitosan on plant responses with special reference to abiotic stress Physiology and Molecular Biology of Plants 25 2 313 26 Search in Google Scholar

Jung, W.J., and Park, R.D. 2014. Bioproduction of chitooligosaccharides: present and perspectives. Marine Drugs 12(11):5328–56. doi: 10.3390/md12115328. JungW.J. ParkR.D. 2014 Bioproduction of chitooligosaccharides: present and perspectives Marine Drugs 12 11 5328 56 10.3390/md12115328 Open DOISearch in Google Scholar

Kafetzopoulos, D., Martinou, A., and Bouriotis, V. 1993. Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii. Proceedings of the National Academy of Sciences 90(7):2564–8. KafetzopoulosD. MartinouA. BouriotisV. 1993 Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii Proceedings of the National Academy of Sciences 90 7 2564 8 Search in Google Scholar

Karava, A., Lazaridou, M., Nanaki, S., Michailidou, G., Christodoulou, E., Kostoglou, M., Iatrou, H., and Bikiaris, D.N. 2020. Chitosan derivatives with mucoadhesive and antimicrobial properties for simultaneous nanoencapsulation and extended ocular release formulations of dexamethasone and chloramphenicol drugs. Pharmaceutics 12(6): 594. doi: 10.3390/pharmaceutics12060594. KaravaA. LazaridouM. NanakiS. MichailidouG. ChristodoulouE. KostoglouM. IatrouH. BikiarisD.N. 2020 Chitosan derivatives with mucoadhesive and antimicrobial properties for simultaneous nanoencapsulation and extended ocular release formulations of dexamethasone and chloramphenicol drugs Pharmaceutics 12 6 594 10.3390/pharmaceutics12060594 Open DOISearch in Google Scholar

Khan, M.R. and Sharma, R.K. 2020. Fusariumnematode wilt disease complexes, etiology and mechanism of development. Indian Phytopathology 73(4):615–28. KhanM.R. SharmaR.K. 2020 Fusariumnematode wilt disease complexes, etiology and mechanism of development Indian Phytopathology 73 4 615 28 Search in Google Scholar

Mohammadpour, D.N., Eskandari, R., Avad, M.R., Zolfagharian, H., Mohammad, M.S.A., and Rezayat, M. 2012. Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. Journal of Venomous Animals and Toxins Including Tropical Diseases 18:44–52. MohammadpourD.N. EskandariR. AvadM.R. ZolfagharianH. MohammadM.S.A. RezayatM. 2012 Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system Journal of Venomous Animals and Toxins Including Tropical Diseases 18 44 52 Search in Google Scholar

Naveed, M., Phil, L., Sohail, M., Hasnat, M., Baig, M.M., Ihsan, A.U., Shumzaid, M., Kakar, M.U., Khan, T.M., Akabar, M.D., and Hussain, M.I. 2019. Chitosan oligosaccharide (COS): An overview. International Journal of Biological Macromolecules 129: 827–43. doi: 10.1016/j.ijbiomac.2019.01.192. NaveedM. PhilL. SohailM. HasnatM. BaigM.M. IhsanA.U. ShumzaidM. KakarM.U. KhanT.M. AkabarM.D. HussainM.I. 2019 Chitosan oligosaccharide (COS): An overview International Journal of Biological Macromolecules 129 827 43 10.1016/j.ijbiomac.2019.01.192 Open DOISearch in Google Scholar

Nguyen, T.V., Nguyen, T.T., Wang, S.L., Vo, T.P., and Nguyen, A.D. 2017. Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex Research on Chemical Intermediates 43(6):3527–37. doi: 10.1007/s11164-016-2428-8. NguyenT.V. NguyenT.T. WangS.L. VoT.P. NguyenA.D. 2017 Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex Research on Chemical Intermediates 43 6 3527 37 10.1007/s11164-016-2428-8 Open DOISearch in Google Scholar

Panse, V.G., and Sukhatme, P.V. 1967. Statistical methods for agricultural workers. New Delhi: Indian Council of Agricultural Research. PanseV.G. SukhatmeP.V. 1967 Statistical methods for agricultural workers New Delhi Indian Council of Agricultural Research Search in Google Scholar

Rabea, E.I., Badawy, M, E., Stevens, C.V., Smagghe, G., and Steurbaut, W. 2003. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465. doi: 10.1021/bm034130m. RabeaE.I. BadawyM, E. StevensC.V. SmaggheG. SteurbautW. 2003 Chitosan as antimicrobial agent: applications and mode of action Biomacromolecules 4 6 1457 1465 10.1021/bm034130m Open DOISearch in Google Scholar

Periayah, M.H., Halim, A.S., and Mat Saad AZ. 2016. Chitosan: A promising marine polysaccharide for biomedical research.” Pharmacognosy Reviews 10(19): 39. PeriayahM.H. HalimA.S. Mat SaadAZ. 2016 Chitosan: A promising marine polysaccharide for biomedical research Pharmacognosy Reviews 10 19 39 Search in Google Scholar

Singh, A., Garg, G., and Sharma, P.K. 2010. Nanospheres: a novel approach for targeted drug delivery system. International Journal of Pharmaceutical Sciences Review and Research 5(3):84–8. SinghA. GargG. SharmaP.K. 2010 Nanospheres: a novel approach for targeted drug delivery system International Journal of Pharmaceutical Sciences Review and Research 5 3 84 8 Search in Google Scholar

Spiegel, Y., Chet, I., and Cohn, E. 1987. Use of chitin for controlling plant plant-parasitic nematodes. Plant and Soil 98(3):337–45. SpiegelY. ChetI. CohnE. 1987 Use of chitin for controlling plant plant-parasitic nematodes Plant and Soil 98 3 337 45 Search in Google Scholar

Sujima A.A., Sahi, S.V., and Venkatachalam, P. 2016. Synthesis of bioactive chemicals crosslinked sodium tripolyphosphate (TPP)-chitosan nanoparticles for enhanced cytotoxic activity against human ovarian cancer cell line (PA-1). Journal of Nanomedicine & Nanotechnology 7(6):1–9. doi: 10.4172/2157-7439.1000418. SujimaA.A. SahiS.V. VenkatachalamP. 2016 Synthesis of bioactive chemicals crosslinked sodium tripolyphosphate (TPP)-chitosan nanoparticles for enhanced cytotoxic activity against human ovarian cancer cell line (PA-1) Journal of Nanomedicine & Nanotechnology 7 6 1 9 10.4172/2157-7439.1000418 Open DOISearch in Google Scholar

Yadav, P., Yadav, H., Shah, V.G., Shah, G., and Dhaka, G. 2015. Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review. Journal of Clinical and Diagnostic Research. 9(9): ZE21–ZE25. doi: 10.7860/JCDR/2015/13907.6565. YadavP. YadavH. ShahV.G. ShahG. DhakaG. 2015 Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review Journal of Clinical and Diagnostic Research 9 9 ZE21 ZE25 10.7860/JCDR/2015/13907.6565 Open DOISearch in Google Scholar

Yanat, M., and Schroen, K. 2021. Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. Reactive and Functional Polymers 161:104849. doi: 10.1016/j.reactfunctpolym.2021.104849. YanatM. SchroenK. 2021 Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging Reactive and Functional Polymers 161 104849 10.1016/j.reactfunctpolym.2021.104849 Open DOISearch in Google Scholar

Youssef, D. and Masry, E.L. 2018. Effect of Chitosan-Nanoparticles on the shelf life of chilled chicken meat and decontamination of Staphylococcus aureus and Salmonella typhimurium. Animal Health Research Journal 6(1):-18. YoussefD. MasryE.L. 2018 Effect of Chitosan-Nanoparticles on the shelf life of chilled chicken meat and decontamination of Staphylococcus aureus and Salmonella typhimurium Animal Health Research Journal 6 1 18 Search in Google Scholar

Zhang, M., I., Tan, T., Yuan, H., and Rui, C. 2003. Insecticidal and fungicidal activities of chitosan and oligo-chitosan. Journal of Bioactive and Compatible Polymers18(5): 391–400. doi: 10.1177/0883911503039019. ZhangM., I. TanT. YuanH. RuiC. 2003 Insecticidal and fungicidal activities of chitosan and oligo-chitosan Journal of Bioactive and Compatible Polymers 18 5 391 400 10.1177/0883911503039019 Open DOISearch in Google Scholar

eISSN:
2640-396X
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Life Sciences, other