Otwarty dostęp

Electrical bioimpedance in the era of artificial intelligence


Zacytuj

Ibrahim B and Jafari R. Cuffless Blood Pressure Monitoring from a Wristband with Calibration-Free Algorithms for Sensing Location Based on Bio-Impedance Sensor Array and Autoencoder. Sci Rep 2022 Jan; 12:319. DOI: 10.1038/s41598-021-03612-1 Ibrahim B and Jafari R. Cuffless Blood Pressure Monitoring from a Wristband with Calibration-Free Algorithms for Sensing Location Based on Bio-Impedance Sensor Array and Autoencoder . Sci Rep 2022 Jan ; 12 : 319 . DOI: 10.1038/s41598-021-03612-1 Open DOISearch in Google Scholar

Sel K, Osman D, Huerta N, Edgar A, Pettigrew RI and Jafari R. Continuous Cuffless Blood Pressure Monitoring with a Wearable Ring Bioimpedance Device. npj Digit. Med. 2023 Mar; 6:1–11. DOI: 10.1038/s41746-023-00796-w Sel K Osman D Huerta N Edgar A Pettigrew RI and Jafari R. Continuous Cuffless Blood Pressure Monitoring with a Wearable Ring Bioimpedance Device . npj Digit. Med . 2023 Mar ; 6 : 1 11 . DOI: 10.1038/s41746-023-00796-w Open DOISearch in Google Scholar

Kireev D, Sel K, Ibrahim B, Kumar N, Akbari A, Jafari R and Akinwande D. Continuous Cuffless Monitoring of Arterial Blood Pressure via Graphene Bioimpedance Tattoos. Nat. Nanotechnol. 2022 Aug; 17:864–70. DOI: 10.1038/s41565-022-01145-w Kireev D Sel K Ibrahim B Kumar N Akbari A Jafari R and Akinwande D. Continuous Cuffless Monitoring of Arterial Blood Pressure via Graphene Bioimpedance Tattoos . Nat. Nanotechnol . 2022 Aug ; 17 : 864 70 . DOI: 10.1038/s41565-022-01145-w Open DOISearch in Google Scholar

Nematollahi MA, Askarinejad A, Asadollahi A, Bazrafshan M, Sarejloo S, Moghadami M, Sasannia S, Farjam M, Homayounfar R, Pezeshki B, Amini M, Roshanzamir M, Alizadehsani R, Bazrafshan H, Bazrafshan drissi H, Tan RS, Acharya UR and Islam MSS. A Cohort Study on the Predictive Capability of Body Composition for Diabetes Mellitus Using Machine Learning. J Diabetes Metab Disord 2023 Nov. DOI: 10.1007/s40200-023-01350-x Nematollahi MA Askarinejad A Asadollahi A Bazrafshan M Sarejloo S Moghadami M Sasannia S Farjam M Homayounfar R Pezeshki B Amini M Roshanzamir M Alizadehsani R Bazrafshan H Bazrafshan drissi H Tan RS Acharya UR and Islam MSS. A Cohort Study on the Predictive Capability of Body Composition for Diabetes Mellitus Using Machine Learning . J Diabetes Metab Disord 2023 Nov . DOI: 10.1007/s40200-023-01350-x Open DOISearch in Google Scholar

Sanai F, Sahid AS, Huvanandana J, Spoa S, Boyle LH, Hribar J, Wang DTY, Kwan B, Colagiuri S, Cox SJ and Telfer TJ. Evaluation of a Continuous Blood Glucose Monitor: A Novel and Non-Invasive Wearable Using Bioimpedance Technology. J Diabetes Sci Technol 2023 Mar; 17:336–44. DOI: 10.1177/19322968211054110 Sanai F Sahid AS Huvanandana J Spoa S Boyle LH Hribar J Wang DTY Kwan B Colagiuri S Cox SJ and Telfer TJ. Evaluation of a Continuous Blood Glucose Monitor: A Novel and Non-Invasive Wearable Using Bioimpedance Technology . J Diabetes Sci Technol 2023 Mar ; 17 : 336 44 . DOI: 10.1177/19322968211054110 Open DOISearch in Google Scholar

Pandeya SR, Nagy JA, Riveros D, Semple C, Taylor RS, Hu A, Sanchez B and Rutkove SB. Using Machine Learning Algorithms to Enhance the Diagnostic Performance of Electrical Impedance Myography. Muscle & Nerve 2022; 66:354–61. DOI: 10.1002/mus.27664 Pandeya SR Nagy JA Riveros D Semple C Taylor RS Hu A Sanchez B and Rutkove SB. Using Machine Learning Algorithms to Enhance the Diagnostic Performance of Electrical Impedance Myography . Muscle & Nerve 2022 ; 66 : 354 61 . DOI: 10.1002/mus.27664 Open DOISearch in Google Scholar

Schaeffer J, Gasper P, Garcia-Tamayo E, Gasper R, Adachi M, Gaviria-Cardona JP, Montoya-Bedoya S, Bhutani A, Schiek A, Goodall R, Findeisen R, Braatz RD and Engelke S. Machine Learning Benchmarks for the Classification of Equivalent Circuit Models from Electrochemical Impedance Spectra. J. Electrochem. Soc. 2023 Jun; 170:060512. DOI: 10.1149/1945-7111/acd8fb Schaeffer J Gasper P Garcia-Tamayo E Gasper R Adachi M Gaviria-Cardona JP Montoya-Bedoya S Bhutani A Schiek A Goodall R Findeisen R Braatz RD and Engelke S. Machine Learning Benchmarks for the Classification of Equivalent Circuit Models from Electrochemical Impedance Spectra . J. Electrochem. Soc . 2023 Jun ; 170 :060512. DOI: 10.1149/1945-7111/acd8fb Open DOISearch in Google Scholar

Chen X, Wang Z, Zhang X, Fu R, Wang D, Zhang M and Wang H. Deep Autoencoder Imaging Method for Electrical Impedance Tomography. IEEE Transactions on Instrumentation and Measurement 2021; 70:1–15. DOI: 10.1109/TIM.2021.3094834 Chen X Wang Z Zhang X Fu R Wang D Zhang M and Wang H. Deep Autoencoder Imaging Method for Electrical Impedance Tomography . IEEE Transactions on Instrumentation and Measurement 2021 ; 70 : 1 15 . DOI: 10.1109/TIM.2021.3094834 Open DOISearch in Google Scholar

Wu Y, Chen B, Liu K, Zhu C, Pan H, Jia J, Wu H and Yao J. Shape Reconstruction With Multiphase Conductivity for Electrical Impedance Tomography Using Improved Convolutional Neural Network Method. IEEE Sensors Journal 2021 Apr; 21:9277–87. DOI: 10.1109/JSEN.2021.3050845 Wu Y Chen B Liu K Zhu C Pan H Jia J Wu H and Yao J. Shape Reconstruction With Multiphase Conductivity for Electrical Impedance Tomography Using Improved Convolutional Neural Network Method . IEEE Sensors Journal 2021 Apr ; 21 : 9277 87 . DOI: 10.1109/JSEN.2021.3050845 Open DOISearch in Google Scholar

Ren S, Guan R, Liang G and Dong F. RCRC: A Deep Neural Network for Dynamic Image Reconstruction of Electrical Impedance Tomography. IEEE Transactions on Instrumentation and Measurement 2021; 70:1–11. DOI: 10.1109/TIM.2021.3092061 Ren S Guan R Liang G and Dong F. RCRC: A Deep Neural Network for Dynamic Image Reconstruction of Electrical Impedance Tomography . IEEE Transactions on Instrumentation and Measurement 2021 ; 70 : 1 11 . DOI: 10.1109/TIM.2021.3092061 Open DOISearch in Google Scholar

Ren S, Sun K, Tan C and Dong F. A Two-Stage Deep Learning Method for Robust Shape Reconstruction With Electrical Impedance Tomography. IEEE Transactions on Instrumentation and Measurement 2020 Jul; 69:4887–97. DOI: 10.1109/TIM.2019.2954722 Ren S Sun K Tan C and Dong F. A Two-Stage Deep Learning Method for Robust Shape Reconstruction With Electrical Impedance Tomography . IEEE Transactions on Instrumentation and Measurement 2020 Jul ; 69 : 4887 97 . DOI: 10.1109/TIM.2019.2954722 Open DOISearch in Google Scholar

Liu D, Wang J, Shan Q, Smyl D, Deng J and Du J. DeepEIT: Deep Image Prior Enabled Electrical Impedance Tomography. IEEE Transactions on Pattern Analysis and Machine Intelligence 2023 Aug; 45:9627–38. DOI: 10.1109/TPAMI.2023.3240565 Liu D Wang J Shan Q Smyl D Deng J and Du J. DeepEIT: Deep Image Prior Enabled Electrical Impedance Tomography . IEEE Transactions on Pattern Analysis and Machine Intelligence 2023 Aug ; 45 : 9627 38 . DOI: 10.1109/TPAMI.2023.3240565 Open DOISearch in Google Scholar

Murbach MD and Schwartz DT. Open Software and Datasets for the Analysis of Electrochemical Impedance Spectra. Electrochem. Soc. Interface 2019 Jan; 28:51. DOI: 10.1149/2.F05191if Murbach MD and Schwartz DT. Open Software and Datasets for the Analysis of Electrochemical Impedance Spectra . Electrochem. Soc. Interface 2019 Jan ; 28 : 51 . DOI: 10.1149/2.F05191if Open DOISearch in Google Scholar

Chen X, Roberts R, Liu Z and Tong W. A Generative Adversarial Network Model Alternative to Animal Studies for Clinical Pathology Assessment. Nat Commun 2023 Nov; 14:7141. DOI: 10.1038/s41467-023-42933-9 Chen X Roberts R Liu Z and Tong W. A Generative Adversarial Network Model Alternative to Animal Studies for Clinical Pathology Assessment . Nat Commun 2023 Nov ; 14 : 7141 . DOI: 10.1038/s41467-023-42933-9 Open DOISearch in Google Scholar

Guttulsrud H. Generating Synthetic Medical Images with 3D GANs. MA thesis. Oslomet - storbyuniversitetet, 2023 Guttulsrud H. Generating Synthetic Medical Images with 3D GANs . MA thesis. Oslomet - storbyuniversitetet , 2023 Search in Google Scholar

Mensing D, Hirsch J, Wenzel M and Günther M. 3D (c)GAN for Whole Body MR Synthesis. Deep Generative Models: Second MICCAI Workshop, DGM4MICCAI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings. Berlin, Heidelberg: Springer-Verlag, 2022 Sep :97–105. DOI: 10.1007/978-3-031-18576-2_10 Mensing D Hirsch J Wenzel M and Günther M. 3D (c)GAN for Whole Body MR Synthesis . Deep Generative Models: Second MICCAI Workshop, DGM4MICCAI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings . Berlin, Heidelberg : Springer-Verlag , 2022 Sep : 97 105 . DOI: 10.1007/978-3-031-18576-2_10 Open DOISearch in Google Scholar

Schaefferkoetter J, Yan J, Moon S, Chan R, Ortega C, Metser U, Berlin A and Veit-Haibach P. Deep Learning for Whole-Body Medical Image Generation. Eur J Nucl Med Mol Imaging 2021 Nov; 48:3817–26. DOI: 10.1007/s00259-021-05413-0 Schaefferkoetter J Yan J Moon S Chan R Ortega C Metser U Berlin A and Veit-Haibach P. Deep Learning for Whole-Body Medical Image Generation . Eur J Nucl Med Mol Imaging 2021 Nov ; 48 : 3817 26 . DOI: 10.1007/s00259-021-05413-0 Open DOISearch in Google Scholar

Wu C, Zhang H, Chen J, Gao Z, Zhang P, Muhammad K and Del Ser J. Vessel-GAN: Angiographic Reconstructions from Myocardial CT Perfusion with Explainable Generative Adversarial Networks. Future Generation Computer Systems 2022 May; 130:128–39. DOI: 10.1016/j.future.2021.12.007 Wu C Zhang H Chen J Gao Z Zhang P Muhammad K and Del Ser J. Vessel-GAN: Angiographic Reconstructions from Myocardial CT Perfusion with Explainable Generative Adversarial Networks . Future Generation Computer Systems 2022 May ; 130 : 128 39 . DOI: 10.1016/j.future.2021.12.007 Open DOISearch in Google Scholar

Moeyersons J, Morales J, Seeuws N, Van Hoof C, Hermeling E, Groenendaal W, Willems R, Van Huffel S and Varon C. Artefact Detection in Impedance Pneumography Signals: A Machine Learning Approach. Sensors 2021 Jan; 21:2613. DOI: 10.3390/s21082613 Moeyersons J Morales J Seeuws N Van Hoof C Hermeling E Groenendaal W Willems R Van Huffel S and Varon C. Artefact Detection in Impedance Pneumography Signals: A Machine Learning Approach . Sensors 2021 Jan ; 21 : 2613 . DOI: 10.3390/s21082613 Open DOISearch in Google Scholar

Smyl D and Liu D. Optimizing Electrode Positions in 2-D Electrical Impedance Tomography Using Deep Learning. IEEE Transactions on Instrumentation and Measurement 2020 Sep; 69:6030–44. DOI: 10.1109/TIM.2020.2970371 Smyl D and Liu D. Optimizing Electrode Positions in 2-D Electrical Impedance Tomography Using Deep Learning . IEEE Transactions on Instrumentation and Measurement 2020 Sep ; 69 : 6030 44 . DOI: 10.1109/TIM.2020.2970371 Open DOISearch in Google Scholar

Wang H, Xu G and Zhou Q. A Comparative Study of Variational Autoencoders, Normalizing Flows, and Score-Based Diffusion Models for Electrical Impedance Tomography. Journal of Inverse and Ill-posed Problems 2024 Jan. DOI: 10.1515/jiip-2023-0037 Wang H Xu G and Zhou Q. A Comparative Study of Variational Autoencoders, Normalizing Flows, and Score-Based Diffusion Models for Electrical Impedance Tomography . Journal of Inverse and Ill-posed Problems 2024 Jan . DOI: 10.1515/jiip-2023-0037 Open DOISearch in Google Scholar