1. bookTom 13 (2020): Zeszyt 2 (September 2020)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1805-4196
Pierwsze wydanie
20 Jun 2008
Częstotliwość wydawania
3 razy w roku
Języki
Angielski
Otwarty dostęp

Eucalyptus in Malaysia: Review on Environmental Impacts

Data publikacji: 28 Aug 2020
Tom & Zeszyt: Tom 13 (2020) - Zeszyt 2 (September 2020)
Zakres stron: 79 - 94
Otrzymano: 26 Feb 2020
Przyjęty: 02 Jun 2020
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1805-4196
Pierwsze wydanie
20 Jun 2008
Częstotliwość wydawania
3 razy w roku
Języki
Angielski

Alexandridis, T. K., Sotiropoulou, A. M., Bilas, G., Karapetsas, N., & Silleos, N. G. (2015). The Effects of Seasonality in Estimating the C-Factor of Soil Erosion Studies. Land Degradation and Development, 26(6), 596–603.10.1002/ldr.2223Search in Google Scholar

Bachega, L. R., Bouillet, J. P., de Cássia Piccolo, M., Saint-André, L., Bouvet, J. M., Nouvellon, Y., Laclau, J. P. (2016). Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the Home Field Advantage hypothesis. Forest Ecology and Management, 359, 33–43.10.1016/j.foreco.2015.09.026Search in Google Scholar

Baillie, B. R., & Neary, D. G. (2015). Water quality in New Zealand’s planted forests: A review. New Zealand Journal of Forestry Science, 45(1).10.1186/s40490-015-0040-0Search in Google Scholar

Barlow, J., Mestre, L. A. M., Gardner, T. A., & Peres, C. A. (2007). The value of primary, secondary and plantation forests for Amazonian birds. Biological Conservation, 136(2), 212–231.10.1016/j.biocon.2006.11.021Search in Google Scholar

Blanco-Moure, N., Gracia, R., Bielsa, A. C., & López, M. V. (2016). Soil organic matter fractions as affected by tillage and soil texture under semiarid Mediterranean conditions. Soil and Tillage Research, 155, 381–389.10.1016/j.still.2015.08.011Search in Google Scholar

Blum, U. (2011). Plant–plant allelopathic interactions. In Plant-Plant Allelopathic Interactions (pp. 1-7), Springer, Dordrecht.Search in Google Scholar

Bot A, B. J. (2005). The importance of soil organic matter: Key to drough-resistant soil and sustained food and production. FAO.Search in Google Scholar

Brockerhoff, E. G., Jactel, H., Parrotta, J. A., Quine, C. P., & Sayer, J. (2008). Plantation forests and biodiversity: Oxymoron or opportunity? Biodiversity and Conservation, 17(5), 925–951.10.1007/s10531-008-9380-xSearch in Google Scholar

Brzostek, E. R., Dragoni, D., Brown, Z. A., & Phillips, R. P. (2015). Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest. New Phytologist, 206(4), 1274–1282.10.1111/nph.1330325627914Search in Google Scholar

Bunn, W. A., Jenkins, M. A., Brown, C. B., & Sanders, N. J. (2010). Change within and among forest communities: The influence of historic disturbance, environmental gradients, and community attributes. Ecography, 33(3), 425–434.Search in Google Scholar

Calviño-Cancela, M. (2013). Effectiveness of eucalypt plantations as a surrogate habitat for birds. Forest Ecology and Management, 310, 692–699.10.1016/j.foreco.2013.09.014Search in Google Scholar

Calviño-Cancela, M., Rubido-Bará, M., & van Etten, E. J. B. (2012). Do eucalypt plantations provide habitat for native forest biodiversity? Forest Ecology and Management, 270, 153–162.10.1016/j.foreco.2012.01.019Search in Google Scholar

Chu, S., Ouyang, J., Liao, D., Zhou, Y., Liu, S., Shen, D., Zeng, S. (2019). Effects of enriched planting of native tree species on surface water flow, sediment, and nutrient losses in a Eucalyptus plantation forest in southern China. Science of the Total Environment, 675, 224–234.10.1016/j.scitotenv.2019.04.21431030130Search in Google Scholar

Chung, A. Y. C. Ajik, M., & Kimjus, K. (2015). A Note on Some Pests of Eucalyptus in Sabah, Malaysia. Sandakan, SabahSearch in Google Scholar

Cook, R. L., Binkley, D., & Stape, J. L. (2016). Eucalyptus plantation effects on soil carbon after 20years and three rotations in Brazil. Forest Ecology and Management, 359, 92–98.10.1016/j.foreco.2015.09.035Search in Google Scholar

Dresel, P. E., Dean, J. F., Perveen, F., Webb, J. A., Hekmeijer, P., Adelana, S. M., & Daly, E. (2018). Effect of Eucalyptus plantations, geology, and precipitation variability on water resources in upland intermittent catchments. Journal of Hydrology, 564, 723-739.10.1016/j.jhydrol.2018.07.019Search in Google Scholar

Duan, W., Ren, H., Fu, S., Wang, J., Zhang, J., Yang, L., & Huang, C. (2010). Community comparison and determinant analysis of understory vegetation in six plantations in South China. Restoration Ecology, 18(2), 206–214.10.1111/j.1526-100X.2008.00444.xSearch in Google Scholar

Enters, T., Durst, P. B., & Brown, C. (2002). What does it take? The role of incentives in forest plantation development in the asia-pacific region.Search in Google Scholar

Evaristo, J., McDonnell, J.J. (2019). Global analysis of streamflow response to forest management. Nature, 570(7762), 455-461.Search in Google Scholar

FAO. (Food and Agriculture Organization). (2009). Eucalyptus in East Africa. The socio economics and environmental issues. FAO Sub-regional office, eastern Africa, Addis Ababa. Retrieved November 20, 2019, from http://www.fao.org/3/a-aq401e.pdf.Search in Google Scholar

Felton, A., Knight, E., Wood, J., Zammit, C., & Lindenmayer, D. (2010). A meta-analysis of fauna and flora species richness and abundance in plantations and pasture lands. Biological Conservation, Vol. 143, pp. 545–554.10.1016/j.biocon.2009.11.030Search in Google Scholar

Ferraz, S. F. de B., Rodrigues, C. B., Garcia, L. G., Alvares, C. A., & Lima, W. de P. (2019). Effects of Eucalyptus plantations on streamflow in Brazil: Moving beyond the water use debate. Forest Ecology and Management, 453(August).10.1016/j.foreco.2019.117571Search in Google Scholar

Ferreira, A. J. D., Coelho, C. O. A., Walsh, R. P. D., Shakesby, R. A., Ceballos, A., & Doerr, S. H. (2000). Hydrological implications of soil water-repellency in Eucalyptus globulus forests, north-central Portugal. Journal of Hydrology, 231–232, 165–177.10.1016/S0022-1694(00)00192-XSearch in Google Scholar

Ferreira, C. S. S., Keizer, J. J., Santos, L. M. B., Serpa, D., Silva, V., Cerqueira, M., & Abrantes, N. (2018). Runoff, sediment and nutrient exports from a Mediterranean vineyard under integrated production: An experiment at plot scale. Agriculture, Ecosystems and Environment, 256, 184–193.10.1016/j.agee.2018.01.015Search in Google Scholar

Ferreira, V., Boyero, L., Calvo, C., Correa, F., Figueroa, R., Gonçalves, J. F., Teixeira-de-Mello, F. (2019). A Global Assessment of the Effects of Eucalyptus Plantations on Stream Ecosystem Functioning. Ecosystems, 22(3), 629–642.10.1007/s10021-018-0292-7Search in Google Scholar

Forrester, D. I., Bauhus, J., & Khanna, P. K. (2004). Growth dynamics in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. Forest Ecology and Management, 193(1–2), 81–95.10.1016/j.foreco.2004.01.024Search in Google Scholar

Forrester, D. I., Collopy, J. J., & Morris, J. D. (2010a). Transpiration along an age series of Eucalyptus globulus plantations in southeastern Australia. Forest Ecology and Management, 259(9), 1754–1760.10.1016/j.foreco.2009.04.023Search in Google Scholar

Forrester, D. I., Theiveyanathan, S., Collopy, J. J., & Marcar, N. E. (2010b). Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. Forest Ecology and Management, 259(9), 1761–1770.10.1016/j.foreco.2009.07.036Search in Google Scholar

Gessesse, D., & Teklu, E. (2011). Eucalyptus in East Africa Socio-economic and environmental issues. Planted Forests and Trees Working Papers Eucalyptus in East Africa Socio-Economic and Environmental Issues, (46), 3–22.Search in Google Scholar

Goded, S., Ekroos, J., Domínguez, J., Azcárate, J. G., Guitián, J. A., & Smith, H. G. (2019). Effects of eucalyptus plantations on avian and herb species richness and composition in North-West Spain. Global Ecology and Conservation, 19.10.1016/j.gecco.2019.e00690Search in Google Scholar

González-García, M., Hevia, A., Majada, J., Rubiera, F., & Barrio-Anta, M. (2016). Nutritional, carbon and energy evaluation of Eucalyptus nitens short rotation bioenergy plantations in northwestern Spain. IForest, 9, 303–310.10.3832/ifor1505-008Search in Google Scholar

Griffiths R, Madritch M, S. A. (2009). The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. For Ecol Manage, 257(1–7).10.1016/j.foreco.2008.08.010Search in Google Scholar

Hartley, M. J. (2002). Rationale and methods for conserving biodiversity in plantation forests. Forest Ecology and Management, 155(1–3), 81–95.10.1016/S0378-1127(01)00549-7Search in Google Scholar

Harwood, C. E., & Nambiar, E. K. S. (2014). Sustainable plantation forestry in South-East Asia: Reports on country visits to Sumatra, Indonesia and Sabah, Malaysia.Search in Google Scholar

Herna′ndez J, del Pino A, Salvo L, A. G. (2009). Nutrient export and harvest residue decomposition patterns of a Eucalyptus dunnii Maiden plantation in temperate climate of Uruguay. For Ecol Manage, 258, 92–99.10.1016/j.foreco.2009.03.050Search in Google Scholar

Hernández, J., del Pino, A., Hitta, M., & Lorenzo, M. (2016). Management of forest harvest residues affects soil nutrient availability during reforestation of Eucalyptus grandis. Nutrient Cycling in Agroecosystems, 105(2), 141–155.10.1007/s10705-016-9781-2Search in Google Scholar

Hobbie, E. A., & Colpaert, J. V. (2004). Nitrogen availability and mycorrhizal colonization influence water use efficiency and carbon isotope patterns in Pinus sylvestris. New Phytologist, 164(3), 515–525.10.1111/j.1469-8137.2004.01187.xSearch in Google Scholar

Hsu, T., French, K., & Major, R. (2010). Avian assemblages in eucalypt forests, plantations and pastures in northern NSW, Australia. Forest Ecology and Management, 260(6), 1036-1046.10.1016/j.foreco.2010.06.028Search in Google Scholar

Hubbard, R. M., Ryan, M. G., Giardina, C. P., & Barnard, H. (2004). The effect of fertilization on sap flux and canopy conductance in a Eucalyptus saligna experimental forest. Global Change Biology, 10(4), 427–436.10.1111/j.1529-8817.2003.00741.xSearch in Google Scholar

Hubbard, R. M., Stape, J., Ryan, M. G., Almeida, A. C., & Rojas, J. (2010). Effects of irrigation on water use and water use efficiency in two fast growing Eucalyptus plantations. Forest Ecology and Management, 259(9), 1714–1721.10.1016/j.foreco.2009.10.028Search in Google Scholar

Hunke, P., Roller, R., Zeilhofer, P., Schröder, B., Mueller, E. N. (2015). Soil changes under different land-uses in the Cerrado of Mato Grosso, Brazil. Geoderma Reg., 4, 31–43.10.1016/j.geodrs.2014.12.001Search in Google Scholar

Jagger, P., & Pender, J. (2003). The role of trees for sustainable management of less-favored lands: the case of eucalyptus in Ethiopia. 5, 83–95.10.1016/S1389-9341(01)00078-8Search in Google Scholar

Janssen, M. L. (2016). Forest Management Plan. Acacia Forest Industries Sdn Bhd Retrieved January 6, 2020, from http://afisb.com.my/wp-content/uploads/2017/07/FMP/FMP-Public-Summary-Ver.7-5.5.pdf.Search in Google Scholar

Jung-Tai, L., Sung-Ming, T., & Chung-Hung, L. (2017). The nitrogen-fixing Bradyrhizobium elkanii significantly stimulates root development and pullout resistance of Acacia confusa. African Journal of Biotechnology, 16(18), 1067–1077.10.5897/AJB2017.15971Search in Google Scholar

Kline, K. L., & Coleman, M. D. (2010). Woody energy crops in the southeastern United States: Two centuries of practitioner experience. Biomass and Bioenergy, Vol. 34, pp. 1655–1666.10.1016/j.biombioe.2010.05.005Search in Google Scholar

Lacombe, G., Valentin, C., Sounyafong, P., de Rouw, A., Soulileuth, B., Silvera, N., Ribolzi, O. (2018). Linking crop structure, throughfall, soil surface conditions, runoff and soil detachment: 10 land uses analyzed in Northern Laos. Science of the Total Environment, 616–617, 1330–1338.10.1016/j.scitotenv.2017.10.185Search in Google Scholar

Laganière, J., Angers, D. A., & Paré, D. (2010). Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Global Change Biology, 16(1), 439–453.10.1111/j.1365-2486.2009.01930.xSearch in Google Scholar

Lappalainen, A., Shurukhin, A., Alekseev, G., & Rinne, J. (2000). Coastal fish communities along the northern coast of the Gulf of Finland, Baltic Sea: Responses to salinity and eutrophication. International Review of Hydrobiology, 85(5–6), 687–696.10.1002/1522-2632(200011)85:5/6<687::AID-IROH687>3.0.CO;2-4Search in Google Scholar

Lara, A., Little, C., Urrutia, R., McPhee, J., Álvarez-Garretón, C., Oyarzún, C., Arismendi, I. (2009). Assessment of ecosystem services as an opportunity for the conservation and management of native forests in Chile. Forest Ecology and Management, 258(4), 415–424.10.1016/j.foreco.2009.01.004Search in Google Scholar

Lindenmayer, D. B., & Hobbs, R. J. (2004). Fauna conservation in Australian plantation forests - A review. Biological Conservation, 119(2), 151–168.10.1016/j.biocon.2003.10.028Search in Google Scholar

Liu, W., Luo, Q., Lu, H., Wu, J., & Duan, W. (2017). The effect of litter layer on controlling surface runoff and erosion in rubber plantations on tropical mountain slopes, SW China. Catena, 149, 167–175.10.1016/j.catena.2016.09.013Search in Google Scholar

Madeira, A. C., Madeira, M., Fabião, A., Marques, P., & Carneiro, M. (2010). Impact of harvest residues, fertilisers and N-fixing plants on growth and nutritional status of young Eucalyptus globulus plantations, under Mediterranean conditions. European Journal of Forest Research, 129(4), 591–601.10.1007/s10342-010-0359-2Search in Google Scholar

Magura, T., Báldi, A., & Horváth, R. (2008). Breakdown of the species-area relationship in exotic but not in native forest patches. Acta Oecologica, 33(3), 272–279.10.1016/j.actao.2007.11.007Search in Google Scholar

Malaysian Timber Industry Board. (2005). Malaysian Timber Industry Board.Search in Google Scholar

Manzoni, S., Taylor, P., Richter, A., Porporato, A., & Ågren, G. I. (2012). Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist, 196(1), 79–91.10.1111/j.1469-8137.2012.04225.xSearch in Google Scholar

McMahon, D. E., Vergütz, L., Valadares, S. V., Silva, I. R. da, & Jackson, R. B. (2019). Soil nutrient stocks are maintained over multiple rotations in Brazilian Eucalyptus plantations. Forest Ecology and Management, 448(March), 364–375.10.1016/j.foreco.2019.06.027Search in Google Scholar

Mekonnen, Z., Kassa, H., Lemenh, M., & Campbell, B. (2007). The role and management of eucalyptus in lode hetosa district, central ethiopia. Forests Trees and Livelihoods, 17(4), 309–323.10.1080/14728028.2007.9752606Search in Google Scholar

Mendham. D.S., O’Connell. A.M., Grove. T.S., R. S. J. (2003). Residue management effects on soil carbon and nutrient contents and growth of second rotation eucalypts. Forest Ecology and Management, 181(3), 357–372.10.1016/S0378-1127(03)00007-0Search in Google Scholar

Morris, J., Ningnan, Z., Zengjiang, Y., Collopy, J., & Xu, D. (2004). Water use by fast-growing Eucalyptus urophylla plantations in southern China. Tree Physiology, 24(9), 1035–1044.10.1093/treephys/24.9.103515234901Search in Google Scholar

Nacry, P., Bouguyon, E., & Gojon, A. (2013). Nitrogen acquisition by roots: Physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant and Soil, 370(1–2), 1–29.10.1007/s11104-013-1645-9Search in Google Scholar

Neary, D.G., Ice, G.G., Jackson, C. R. (2009). Linkages between forest soils and water quality and quantity. For. Ecol. Manage, 258, 2269–2281.10.1016/j.foreco.2009.05.027Search in Google Scholar

Ning, T., Li, Z., & Liu, W. (2017). Vegetation dynamics and climate seasonality jointly control the interannual catchment water balance in the Loess Plateau under the Budyko framework. Hydrology and Earth System Sciences, 21(3), 1515–1526.10.5194/hess-21-1515-2017Search in Google Scholar

Nóbrega, R.L.B., Guzha, A.C., Lamparter, G., Amorim, R.S.S., Couto, E.G., Hughes, H. J., & Jungkunst, H.F., Gerold, G. (2018). Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon biomes. Sci. Total Environ., 635, 259–274.10.1016/j.scitotenv.2018.03.356Search in Google Scholar

Old, K. M., Wingfield, M. J., & Yuan. (2003). ZiQing. A manual of diseases of eucalypts in South-East Asia.Search in Google Scholar

Paine, T. D., Steinbauer, M. J., & Lawson, S. A. (2011). Native and Exotic Pests of Eucalyptus: A Worldwide Perspective. Annual Review of Entomology, 56(1), 181–201.10.1146/annurev-ento-120709-144817Search in Google Scholar

Potter, N. J., Zhang, L., Milly, P. C. D., McMahon, T. A., & Jakeman, A. J. (2005). Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments. Water Resources Research, 41(6), 1–11.10.1029/2004WR003697Search in Google Scholar

Proença, V. M., Pereira, H. M., Guilherme, J., & Vicente, L. (2010). Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal. Acta Oecologica. 36(2), 219-226.10.1016/j.actao.2010.01.002Search in Google Scholar

Quinn, J. M., Croker, G. F., Smith, B. J., & Bellingham, M. A. (2009). Integrated catchment management effects on flow, habitat, instream vegetation and macroinvertebrates in Waikato, New Zealand, hill-country streams. New Zealand Journal of Marine and Freshwater Research, 43(3), 775-802.10.1080/00288330909510041Search in Google Scholar

Richard, A., Galle, S., Descloitres, M., Cohard, J. M., Vandervaere, J. P., Séguis, L., & Peugeot, C. (2013). Interplay of riparian forest and groundwater in the hillslope hydrology of sudanian west africa (northern Benin). Hydrology and Earth System Sciences, 17(12), 5079–5096.10.5194/hess-17-5079-2013Search in Google Scholar

Salemi, L. F., Groppo, J. D., Trevisan, R., Marcos de Moraes, J., de Paula Lima, W., & Martinelli, L. A. (2012). Riparian vegetation and water yield: A synthesis. Journal of Hydrology, 454–455, 195–202.10.1016/j.jhydrol.2012.05.061Search in Google Scholar

Salleh, S. (1995). Eucalyptus Plantations. The Malaysian Experience.Search in Google Scholar

Santana, R. C., Barros, N. F., & Comerford, N. B. (2000). Above-ground biomass, nutrient content, and nutrient use efficiency of eucalypt plantations growing in different sites in Brazil. New Zealand Journal of Forestry Science, 30(1), 225–236.Search in Google Scholar

Silva, F. C., Shvaleva, A., Maroco, J. P., Almeida, M. H., Chaves, M. M., & Pereira, J. S. (2004). Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance. Tree Physiology, 24(10), 1165–1172.10.1093/treephys/24.10.1165Search in Google Scholar

Spangenberg. A, Grimm. U, Sepeda da Silva. J.R, F. H. (1996). Nutrient store and export rates of Eucalyptus urograndis plantations in eastern Amazonia (Jari). Forest Ecology and Management, 80(1–3), 225–234.10.1016/0378-1127(95)03615-6Search in Google Scholar

Stanturf, J. A., Vance, E. D., Fox, T. R., & Kirst, M. (2013). Eucalyptus beyond Its Native Range: Environmental Issues in Exotic Bioenergy Plantations. International Journal of Forestry Research, 2013, 1–5.10.1155/2013/463030Search in Google Scholar

Stape, J. L., Binkley, D., Ryan, M. G., Fonseca, S., Loos, R. A., Takahashi, E. N., Azevedo, M. R. (2010). The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand uniformity on wood production. Forest Ecology and Management, 259(9), 1684–1694.10.1016/j.foreco.2010.01.012Search in Google Scholar

Stephens, S. S., & Wagner, M. R. (2007). Forest plantations and biodiversity: A fresh perspective. Journal of Forestry, 105(6), 307–313.Search in Google Scholar

Sun, D., Zhang, W., Lin, Y., Liu, Z., Shen, W., Zhou, L., Fu, S. (2018). Soil erosion and water retention varies with plantation type and age. Forest Ecology and Management, 422, 1–10.10.1016/j.foreco.2018.03.048Search in Google Scholar

Sun, X., Onda, Y., Kato, H., Gomi, T., & Liu, X. (2017). Estimation of throughfall with changing stand structures for Japanese cypress and cedar plantations. Forest Ecology and Management, 402(August), 145–156.10.1016/j.foreco.2017.07.036Search in Google Scholar

Swarowsky, A., Dahlgren, R.A., Tate, K.W., Hopmans, J.W., O’Geen, A. T. (2011). Catchment-scale soil water dynamics in a mediterranean-type oak woodland. Vadose Zo. J.,10, 800.10.2136/vzj2010.0126Search in Google Scholar

The Forestry Administration (FA), Phnom Penh. (2010). Cambodia forestry outlook study. Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific, Bangkok. Retrieved December 15, 2019, from http://www.fao.org/docrep/014/am627e/am627e00.pdf..Search in Google Scholar

Thilakarathna, M. S., Papadopoulos, Y. A., Rodd, A. V., Grimmett, M., Fillmore, S. A. E., Crouse, M., & Prithiviraj, B. (2016). Nitrogen fixation and transfer of red clover genotypes under legume–grass forage based production systems. Nutrient Cycling in Agroecosystems, 106(2), 233–247.10.1007/s10705-016-9802-1Search in Google Scholar

Thompson, A., Davis, J. D., & Oliphant, A. J. (2016). Surface runoff and soil erosion under eucalyptus and oak canopy. Earth Surface Processes and Landforms, 41(8), 1018–1026.10.1002/esp.3881Search in Google Scholar

Viera, M., Fernández, F. R., & Rodríguez-Soalleiro, R. (2016). Nutritional prescriptions for Eucalyptus plantations: Lessons learned from Spain. Forests, 7(4), 1–15.10.3390/f7040084Search in Google Scholar

Wang, W., Wu, X., Yin, C., & Xie, X. (2019). Nutrition loss through surface runoff from slope lands and its implications for agricultural management. Agricultural Water Management, 212(August 2018), 226–231.10.1016/j.agwat.2018.09.007Search in Google Scholar

Whitehead, D., & Beadle, C. L. (2004). Physiological regulation of productivity and water use in Eucalyptus: a review. Forest Ecology and Management, 193(1-2), 113–140.10.1016/j.foreco.2004.01.026Search in Google Scholar

Wichert, M. C. P., Alvares, C. A., Arthur, J., & Stape, J. L. (2018). Site preparation, initial growth and soil erosion in Eucalyptus grandis plantations on steep terrain. Scientia Forestalis, 46(117), 17-30.10.18671/scifor.v46n117.02Search in Google Scholar

Wingfield, M. J., Slippers, B., Hurley, B. P., Coutinho, T. A., Wingfield, B. D., & Roux, J. (2008). Eucalypt pests and diseases: growing threats to plantation productivity. Southern Forests: A Journal of Forest Science, 70(2), 139–144.10.2989/SOUTH.FOR.2008.70.2.9.537Search in Google Scholar

Wu, J., Fan, H., Liu, W., Huang, G., Tang, J., Zeng, R., Liu, Z. (2015). Should Exotic Eucalyptus be Planted in Subtropical China: Insights from Understory Plant Diversity in Two Contrasting Eucalyptus Chronosequences. Environmental Management, 56(5), 1244–1251.10.1007/s00267-015-0578-x26239647Search in Google Scholar

Wu, J., Liu, Z., Chen, D., Huang, G., Zhou, L., & Fu, S. (2011). Understory plants can make substantial contributions to soil respiration: Evidence from two subtropical plantations. Soil Biology and Biochemistry, Vol. 43, pp. 2355–2357.10.1016/j.soilbio.2011.07.011Search in Google Scholar

Wu, X. Y., Zhang, L. P., & Yu, X. X. (2012). Impacts of surface runoff and sediment on nitrogen and phosphorus loss in red soil region of southern China. Environmental Earth Sciences, 67(7), 1939–1949.10.1007/s12665-012-1635-xSearch in Google Scholar

Xu, Y., Du, A., Wang, Z., Zhu, W., Li, C., & Wu, L. (2020). Effects of different rotation periods of Eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity. Forest Ecology and Management, 456(September 2019).10.1016/j.foreco.2019.117683Search in Google Scholar

Yang, G., Wen, M., Deng, Y., Su, X., Jiang, D., Wang, G., Yu, S. (2019). Occurrence patterns of black water and its impact on fish in cutover areas of Eucalyptus plantations. Science of the Total Environment, 693.10.1016/j.scitotenv.2019.07.19931374496Search in Google Scholar

Zaiton, S., Paridah, M. T., Hazandy, A. H., & Azim, R. A. R. A. (2018). Potential of eucalyptus plantation in Malaysia. Malaysian Forester, 81(1), 64–72.Search in Google Scholar

Zalesny, Jr. R.S. (2011). Sustainable Production of Fuels, Chemicals and Fibers From Forest Biomass. Washington, DC, USA: American Chemical Society.Search in Google Scholar

Zegeye, H. (2010). Environmental and Socio-Economic Implications of Eucalyptus in Ethiopia. Eucalyptus Species Management, History, Status and Trends in Ethiopia.Proceedings from the Congress Held in Addis Ababa.September 15th-17th, 2010, 184–205.Search in Google Scholar

Zhang, G., Dong, J., Xiao, X., Hu, Z., & Sheldon, S. (2012). Effectiveness of ecological restoration projects in Horqin Sandy Land, China based on SPOT-VGT NDVI data. Ecological Engineering, Vol. 38, pp. 20–29.10.1016/j.ecoleng.2011.09.005Search in Google Scholar

Zhou, X., Wen, Y., Goodale, U. M., Zuo, H., Zhu, H., Li, X., Huang, X. (2017). Optimal rotation length for carbon sequestration in Eucalyptus plantations in subtropical China. New Forests, 48(5), 609–627.10.1007/s11056-017-9588-2Search in Google Scholar

Zhou, X., Zhu, H., Wen, Y., Goodale, U. M., Li, X., You, Y., Liang, H. (2018). Effects of understory management on trade-offs and synergies between biomass carbon stock, plant diversity and timber production in eucalyptus plantations. Forest Ecology and Management, 410(November 2017), 164–173.10.1016/j.foreco.2017.11.015Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo