Zacytuj

Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Lond Engl 2014; 384: 766–781. Search in Google Scholar

Kansra AR, Lakkunarajah S, Jay MS. Childhood and Adolescent Obesity: A Review. Front Pediatr 2021 Jan 12; 8: 581461. https://doi.org/10.3389/fped.2020.581461. PMID: 33511092; PMCID: PMC7835259. Search in Google Scholar

https://www.who.int/europe/news/item/08-11-2022-childhood-obesity-in-european-region-remains-high--new-who-report-presents-latest-country-data Search in Google Scholar

Park JH, Moon JH, Kim HJ, Kong MH, Oh YH. Sedentary Lifestyle: Overview of Updated Evidence of Potential Health Risks. Korean J Fam Med 2020 Nov; 41(6): 365–373. https://doi.org/10.4082/kjfm.20.0165. Epub 2020 Nov 19. PMID: 33242381; PMCID: PMC7700832. Search in Google Scholar

https://www.who.int/news-room/fact-sheets/detail/obesity-and-over-weight Search in Google Scholar

https://cukrzycapolska.pl/cukrzyca/statystyki/ Search in Google Scholar

Turner RC, Holman RR, Stratton IM, Cull CA, Matthews DR, Manley SE et al. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352, 854–865. Search in Google Scholar

Katz MH. Regardless of Age, Obesity and Hypertension Increase Risks With COVID-19. JAMA Intern Med 2020 Sep 9. https://doi.org/10.1001/jamainternmed.2020.5415. Epub ahead of print. PMID: 32902563. Search in Google Scholar

Góralska M, Majewska-Szczepanik M, Szczepanik M. Mechanizmy immunologiczne towarzyszące otyłości i ich rola w zaburzeniach metabolizmu. Postepy Hig Med Dosw 2015; 69: 1384–1404 [cited 20.11.2017]. Search in Google Scholar

Olszanecka-Glinianowicz M, Zahorska-Markiewicz B. Otyłość jako choroba zapalna. Postepy Hig Med Dosw 2008; 62: 249–257 [cited 20.11.2017]. Search in Google Scholar

Hotamisligil G, Shargill N, Spiegelman B. (1993). Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259(5091), 87–91. Search in Google Scholar

Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 1997; 336: 973–979. Search in Google Scholar

Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000; 342: 836–843. Search in Google Scholar

Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Koba-lava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ. CANTOS Trial Group. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med 2017 Sep 21; 377(12): 1119–1131. https://doi.org/10.1056/NEJMoa1707914. Epub 2017 Aug 27. PMID: 28845751. Search in Google Scholar

https://www.diabetesatlas.org/ Search in Google Scholar

World Health Organization (2015). WHO model list of essential medicines. Retrieved from https://www.who.int/groups/expert-committee-on-selection-and-use-of-essential-medicines/essential-medicines-lists [cited 10.02.2017]. Search in Google Scholar

https://ptdiab.pl/images/docs/zalecenia/2021-Guidelines-on-the-management-of-patients-with-diabetes.pdf Search in Google Scholar

Manufactureres recommandations Search in Google Scholar

Zhou G, Myers R, Li Y et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108: 1167–1174 [PMC free article] [PubMed] [Google Scholar]. Search in Google Scholar

Baker C, Retzik-Stahr C, Singh V, Plomondon R, Anderson V, Rasouli N. Should metformin remain the first-line therapy for treatment of type 2 diabetes? Ther Adv Endocrinol Metab 2021; 12: 2042018820980225. Published 2021 Jan 13. https://doi.org/10.1177/2042018820980225. Search in Google Scholar

Ashcroft FM, Gribble FM. ATP-sensitive K+ channels and insulin secretion: their role in health and disease. Diabetologia 1999 Aug; 42(8): 903–919. https://doi.org/10.1007/s001250051247. PMID: 10491749. Search in Google Scholar

Ashcroft FM, Gribble FM. Tissue-specific effects of sulfonylureas: lessons from studies of cloned K(ATP) channels. J Diabetes Complications 2000 Jul-Aug; 14(4): 192–196. https://doi.org/10.1016/s1056-8727(00)00081-7. PMID: 11004427. Search in Google Scholar

Gaede PH, & Vedel Jepsen P, Larsen JNB, Jensen GV, Parving HH, & Pedersen OB. The Steno-2 study: intensified multifactorial intervention reduces the risk of cardiovascular disease in patients with Type 2 diabetes and microalbuminuria. Journal of the American Society of Nephrology 2022; 13: 7A–7A. Search in Google Scholar

Sola D, Rossi L, Schianca GPC, Maffioli P, Bigliocca M, Mella R, Derosa G et al. (2015). State of the art paper Sulfonylureas and their use in clinical practice. Archives of Medical Science; 11(4), 840–848. https://doi.org/10.5114/aoms.2015.53304. Search in Google Scholar

Nabrdalik K, Cichocka E, Żywiec J, Chodkowski A, Gumprecht J. Pioglitazone for the treatment of type 2 diabetes. Diabetologia Kliniczna 2014; 3(4): 176–180. Search in Google Scholar

Suzuki S, Arnold LL, Pennington KL et al. Effects of pioglitazone, a peroxisome proliferator-activated receptor gamma agonist, on the urine and urothelium of the rat. Toxicol Sci 2010; 113: 349–357. Search in Google Scholar

DeFronzo RA, Inzucchi S, Abdul-Ghani M, Nissen SE. Pioglitazone: The forgotten, cost-effective cardioprotective drug for type 2 diabetes. Diabetes and Vascular Disease Research. March 2019: 133–143. https://doi.org/10.1177/1479164118825376. Search in Google Scholar

Nissen SE, Nicholls SJ, Wolski K, Nesto R, Kupfer S, Perez A, Jure H, De Larochellière R, Staniloae CS, Mavromatis K, Saw J, Hu B, Lincoff AM, Tuzcu EM. PERISCOPE Investigators. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 2008 Apr 2; 299(13): 1561–1573. https://doi.org/10.1001/jama.299.13.1561. Epub 2008 Mar 31. PMID: 18378631. Search in Google Scholar

Tang H, Shi W, Fu S, Wang T, Zhai S, Song Y, Han J. Pioglitazone and bladder cancer risk: a systematic review and meta-analysis. Cancer Med 2018 Apr; 7(4): 1070–1080. https://doi.org/10.1002/cam4.1354. Epub 2018 Feb 24. PMID: 29476615; PMCID: PMC5911601. Search in Google Scholar

Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol 2016 Jun; 4(6): 525–536. https://doi.org/10.1016/S2213-8587(15)00482-9. Epub 2016 Feb 12. PMID: 26876794. Search in Google Scholar

Kapłon-Cieślicka A, Filipiak KJ. Inhibitory peptydazy dipeptydylowej 4 w leczeniu cukrzycy typu 2. Choroby Serca i Naczyń 2012; 9(5): 263–272. Search in Google Scholar

Hardman CT, Rutherford P, Dubrey SW, & Wierzbicki AS. Sodium-Glucose Co-Transporter 2 Inhibitors: From Apple Tree to ‘Sweet Pee’. Current Pharmaceutical Design 2010; 16(34). https://dx.doi.org/10.2174/138161210794455111. Search in Google Scholar

Przybysławski B, Karbowiak P, Rzeszotarski J, Walasek L. Sodium-glucose co-transporter-2 (SGLT2) inhibitors: novel oral antidiabetic drugs. Diabetologia Kliniczna 2013; 2(5): 191–197. Search in Google Scholar

Layton AT, Vallon V. SGLT2 inhibition in a kidney with reduced nephron number: modeling and analysis of solute transport and metabolism. Am J Physiol Renal Physiol 2018. Search in Google Scholar

Invokana (Canagliflozin): First-in-Class SGLT2 Inhibitor Approved for the Treatment of Type 2 Diabetes. https://www.clinicaltrialsarena.com/projects/invokana-canagliflozin-for-the-treatment-of-type-2-diabetes/. Search in Google Scholar

Cefalu WT, Leiter LA, Yoon KH, Arias P, Niskanen L, Xie J, Balis DA, Canovatchel W, Meininger G. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 2013 Sep 14; 382(9896): 941–950. https://doi.org/10.1016/S0140-6736(13)60683-2. Epub 2013 Jul 12. PMID: 23850055. Search in Google Scholar

Jung KH, Chu K, Lee ST, Bahn JJ, Kim JH, Kim M, Lee SK, Roh JK. Risk of macrovascular complications in type 2 diabetes mellitus: endothelial microparticle profiles. Cerebrovasc Dis 2011; 31(5): 485–493. https://doi.org/10.1159/000324383. Epub 2011 Mar 16. PMID: 21411989. Search in Google Scholar

Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A, Del Cañizo-Gómez FJ. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J Diabetes 2014 Aug 15; 5(4): 444–470. https://doi.org/10.4239/wjd.v5.i4.444. PMID: 25126392; PMCID: PMC4127581. Search in Google Scholar

International Diabetes Federation. idf diabetes atlas, 7th ed. Brussels: International Diabetes Federation; 2015. Search in Google Scholar

International Diabetes Federation. Diabetes and cardiovascular disease. Brussels: International Diabetes Federation; 2016, pp. 1–144. Search in Google Scholar

Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol 2020 Dec; 17(12): 761–772. https://doi.org/10.1038/s41569-020-0406-8. Epub 2020 Jul 14. PMID: 32665641. Search in Google Scholar

U.S. Food and Drug Administration. Guidance for Industry. Diabetes Mellitus – Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes. 2008. Retrieved from www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071627.pdf [cited 24.05.2011]. Search in Google Scholar

U.S. Food and Drug Administration. Guidance for Industry. Diabetes Mellitus: Developing Drugs and Therapeutic Biologics for Treatment and Prevention. Retrieved from https://downloads.regulations.gov/FDA-2008-D-0118-0029/content.pdf 2008 [cited 25.05.2011]. Search in Google Scholar

European Medicines Agency. Guideline on clincial investigation of medicinal products in the treatment of diabetes mellitus – draft. 2010. Retrieved from http://www.ema.europa.eu/docs/enGB/documentlibrary/Scientificguideline/2010/02/WC500073570.pdf [cited 24.05.2011]. Search in Google Scholar

Zinman B, Lachin JM, Inzucchi SE. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2016 Mar 17; 374(11): 1094. https://doi.org/10.1056/NEJMc1600827. PMID: 26981940. Search in Google Scholar

Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR; CANVAS Program Collaborative Group. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017 Aug 17; 377(7): 644–657. https://doi.org/10.1056/NEJMoa1611925. Epub 2017 Jun 12. PMID: 28605608. Search in Google Scholar

Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS; DECLARE–TIMI 58 Investigators. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2019 Jan 24; 380(4): 347–357. https://doi.org/10.1056/NEJMoa1812389. Epub 2018 Nov 10. PMID: 30415602. Search in Google Scholar

McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, Böhm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukát A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjöstrand M, Langkilde AM; DAPA-HF Trial Committees and Investigators. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med 2019 Nov 21; 381(21): 1995–2008. https://doi.org/10.1056/NEJMoa1911303. Epub 2019 Sep 19. PMID: 31535829. Search in Google Scholar

Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, Jamal W, Kimura K, Schnee J, Zeller C, Cotton D, Bocchi E, Böhm M, Choi DJ, Chopra V, Chuquiure E, Giannetti N, Janssens S, Zhang J, Gonzalez Juanatey JR, Kaul S, Brunner-La Rocca HP, Merkely B, Nicholls SJ, Perrone S, Pina I, Ponikowski P, Sattar N, Senni M, Seronde MF, Spinar J, Squire I, Taddei S, Wanner C, Zannad F. EMPEROR-Reduced Trial Investigators. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med 2020 Oct 8; 383(15): 1413–1424. https://doi.org/10.1056/NEJMoa2022190. Epub 2020 Aug 28. PMID: 32865377. Search in Google Scholar

Packer M. EMPEROR-Reduced: Empagliflozin in Heart Failure With a Reduced Ejection Fraction, With and Without Diabetes. Presented on 29 August 2020 at the European Society of Cardiology (ESC) Congress 2020 – The Digital Experience. Search in Google Scholar

McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A. ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021 Sep 21; 42(36): 3599–3726. https://doi.org/10.1093/eurheartj/ehab368. Erratum in: Eur Heart J. 2021 Oct 14; PMID: 34447992. Search in Google Scholar

American Diabetes Association. Standards of medical care in diabetes, 2014. Diabetes Care 2014; 37 Suppl 1: S14–80 [PubMed] [Google Scholar]. Search in Google Scholar

Fraser Ds S, Blakeman T. Chronic kidney disease: identification and management in primary care. Pragmat Obs Res 2016; 7: 21–32. Search in Google Scholar

Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, Cannon CP, Capuano G, Chu PL, de Zeeuw D, Greene T, Levin A, Pollock C, Wheeler DC, Yavin Y, Zhang H, Zinman B, Meininger G, Brenner BM, Mahaffey KW. CREDENCE Trial Investigators. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med 2019 Jun 13; 380(24): 2295–2306. https://doi.org/10.1056/NEJMoa1811744. Epub 2019 Apr 14. PMID: 30990260. Search in Google Scholar

Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, Mann JFE, McMurray JJV, Lindberg M, Rossing P, Sjöström CD, Toto RD, Langkilde AM, Wheeler DC; DAPA-CKD Trial Committees and Investigators. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 2020 Oct 8; 383(15): 1436–1446. https://doi.org/10.1056/NEJMoa2024816. Epub 2020 Sep 24. PMID: 32970396. Search in Google Scholar

Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Koba-lava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ; CANTOS Trial Group. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med 2017 Sep 21; 377(12): 1119–1131. https://doi.org/10.1056/NEJMoa1707914. Epub 2017 Aug 27. PMID: 28845751. Search in Google Scholar

Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, Hayashizaki Y, Takasu T, Imamura M, Li Q, Tomiyama H, Kobayashi Y, Noda A, Sasamata M, Shibasaki M. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice. Eur J Pharmacol 2013 Sep 5; 715(1–3): 246–255. https://doi.org/10.1016/j.ejphar.2013.05.014. Epub 2013 May 23. PMID: 23707905. Search in Google Scholar

Mancini SJ, Boyd D, Katwan OJ et al. Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and –independent mechanisms. Sci Rep 2018; 8: 5276. https://doi.org/10.1038/s41598-018-23420-4. Search in Google Scholar

Day EA, Ford RJ, Lu JH, Lu R, Lundenberg L, Desjardins EM, Green AE, Lally JSV, Schertzer JD, Steinberg GR. The SGLT2 inhibitor canagliflozin suppresses lipid synthesis and interleukin-1 beta in ApoE deficient mice. Biochem J 2020 Jun 26; 477(12): 2347–2361. https://doi.org/10.1042/BCJ20200278. PMID: 32510137. Search in Google Scholar

Xu L, Nagata N, Chen G, Nagashimada M, Zhuge F, Ni Y, Sakai Y, Kaneko S, Ota T. Empagliflozin reverses obesity and insulin resistance through fat browning and alternative macrophage activation in mice fed a high-fat diet. BMJ Open Diabetes Res Care 2019 Oct 25; 7(1): e000783. https://doi.org/10.1136/bmjdrc-2019-000783. PMID: 31749970; PMCID: PMC6827766. Search in Google Scholar

Han JH, Oh TJ, Lee G et al. The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE −/− mice fed a western diet. Diabetologia 2017; 60, 364–376. https://doi.org/10.1007/s00125-016-4158-2. Search in Google Scholar

Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity 2010; 32: 593–604. Search in Google Scholar

Wang C, Qin Y, Zhang X, Yang Y, Wu X, Liu J, Qin S, Chen K, Xiao W. Effect of Dapagliflozin on Indicators of Myocardial Fibrosis and Levels of Inflammatory Factors in Heart Failure Patients. Dis Markers 2022 Sep 5; 5834218. https://doi.org/10.1155/2022/5834218. PMID: 36105253; PMCID: PMC9467782. Search in Google Scholar

Lee PC, Ganguly S, Goh SY. Weight loss associated with sodium-glucose cotransporter-2 inhibition: a review of evidence and underlying mechanisms. Obes Rev 2018; 19(12): 1630–1641. Search in Google Scholar

Chintam K, & Chang AR. Strategies to Treat Obesity in Patients With CKD. American Journal of Kidney Diseases 2021; 77(3), 427–439. https://doi.org/10.1053/j.ajkd.2020.08.016. Search in Google Scholar

Hanson P, Randeva H, Cuthbertson DJ, O’Hare PJ, Parsons N, Chatha K, Reidy G, Weickert MO, Barber TM. The DAPA-DIET study: Metabolic response to Dapagliflozin combined with dietary carbohydrate restriction in patients with Type 2 Diabetes Mellitus and Obesity-A longitudinal cohort study. Endocrinol Diabetes Metab 2022 Nov; 5(6): e381. https://doi.org/10.1002/edm2.381. Epub 2022 Oct 20. PMID: 36266774; PMCID: PMC9659664. Search in Google Scholar

Adamson C, Kondo T, Jhund PS, de Boer RA, Cabrera Honorio JW, Claggett B, Desai AS, Alcocer Gamba MA, Al Habeeb W, Hernandez AF, Inzucchi SE, Kosiborod MN, Lam CSP, Langkilde AM, Lindholm D, Bachus E, Litwin SE, Martinez F, Petersson M, Shah SJ, Vaduganathan M, Nguyen Vinh P, Wilderäng U, Solomon SD, McMurray JJV. Dapagliflozin for heart failure according to body mass index: the DELIVER trial. Eur Heart J 2022 Nov 1; 43(41): 4406–4417. https://doi.org/10.1093/eurheartj/ehac481. PMID: 36029309; PMCID: PMC9622300. Search in Google Scholar

Sasaki T, Sugawara M, Fukuda M. Sodium-glucose cotransporter 2 inhibitor-induced changes in body composition and simultaneous changes in metabolic profile: 52-week prospective LIGHT (Luseogliflozin: the Components of Weight Loss in Japanese Patients with Type 2 Diabetes Mellitus). Study J Diabetes Investig 2019 Jan; 10(1): 108–117. https://doi.org/10.1111/jdi.12851. Epub 2018 May 16. PMID: 29660782; PMCID: PMC6319483. Search in Google Scholar

Heimke M, Lenz F, Rickert U, Lucius R, Cossais F. Anti-Inflammatory Properties of the SGLT2 Inhibitor Empagliflozin in Activated Primary Microglia. Cells 2022 Oct 2; 11(19): 3107. https://doi.org/10.3390/cells11193107. PMID: 36231069; PMCID: PMC9563452. Search in Google Scholar

McKellar GE, McCarey DW, Sattar N, & McInnes IB. Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat Rev Cardiol 2009; 6, 410–417. Search in Google Scholar

Kim SR, Lee SG, Kim SH et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun 2020; 11, 2127. https://doi.org/10.1038/s41467-020-15983-6. Search in Google Scholar

Shi Y, Si Y, Fu R, Zhang M, Jiang K, Dai W, Shen J, Li X, Yuan Y. Efficacy and safety of SGLT-2i in overweight/obese, non-diabetic individuals: a meta-analysis of randomized controlled trials. Endokrynol Pol 2022; 73(1): 71–80. https://doi.org/10.5603/EP.a2021.0102. Epub 2022 Feb 4. PMID: 35119088. Search in Google Scholar

Huh Y, Kim YS. Predictors for successful weight reduction during treatment with Dapagliflozin among patients with type 2 diabetes mellitus in primary care. BMC Prim Care 2022; 23, 134. https://doi.org/10.1186/s12875-022-01748-1. Search in Google Scholar

Lopaschuk GD, Verma S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC Basic Transl Sci 2020 Jun 22; 5(6): 632–644. https://doi.org/10.1016/j.jacbts.2020.02.004. PMID: 32613148; PMCID: PMC7315190. Search in Google Scholar

Tsapas A, Karagiannis T, Kakotrichi P, Avgerinos I, Mantsiou C, Tousinas G et al. Comparative efficacy of glucose-lowering medications on body weight and blood pressure in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetes Obes Metab 2021; 23: 2116–2124. https://doi.org/10.1111/dom.14451. Search in Google Scholar

Wang YJ, Yeh TL, Shih MC, Tu YK, Chien KL. Dietary Sodium Intake and Risk of Cardiovascular Disease: A Systematic Review and Dose-Response Meta-Analysis. Nutrients 2020 Sep 25; 12(10): 2934. https://doi.org/10.3390/nu12102934. PMID: 32992705; PMCID: PMC7601012. Search in Google Scholar

Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 2013; 15: 853–862. https://doi.org/10.1111/dom.12127. [PMC free article] [PubMed] [CrossRef] [Google Scholar]. Search in Google Scholar

Nijst P, Verbrugge FH, Grieten L, Dupont M, Steels P, Tang WHW, Mullens W. The pathophysiological role of interstitial sodium in heart failure. J Am Coll Cardiol 2015 Feb 3; 65(4): 378–388. https://doi.org/10.1016/j.jacc.2014.11.025. PMID: 25634838. Search in Google Scholar

Aronson D, Rayfield EJ. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol 2002; 1, 1. https://doi.org/10.1186/1475-2840-1-1. Search in Google Scholar

Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, Zuo F, Quan A, Farkouh ME, Fitchett DH, Goodman SG, Goldenberg RM, Al-Omran M, Gilbert RE, Bhatt DL, Leiter LA, Jüni P, Zinman B, Connelly KA. Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation 2019 Nov 19; 140(21): 1693–1702. https://doi.org/10.1161/CIRCULATIONAHA.119.042375. Epub 2019 Aug 22. PMID: 31434508. Search in Google Scholar

Ayodele OE, Alebiosu CO, Salako BL. Diabetic nephropathy – a review of the natural history, burden, risk factors and treatment. J Natl Med Assoc 2004 Nov; 96(11): 1445–1454. PMID: 15586648; PMCID: PMC2568593. Search in Google Scholar

Neuen BL, Young T, Heerspink HJL, Neal B, Perkovic V, Billot L, Mahaffey KW, Charytan DM, Wheeler DC, Arnott C, Bompoint S, Levin A, Jardine MJ. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2019 Nov; 7(11): 845–854. https://doi.org/10.1016/S2213-8587(19)30256-6. Epub 2019 Sep 5. Erratum in: Lancet Diabetes Endocrinol 2019 Dec; 7(12): e23. PMID: 31495651. Search in Google Scholar

Stanton RC. Sodium glucose transport 2 (SGLT2) inhibition decreases glomerular hyperfiltration: is there a role for SGLT2 inhibitors in diabetic kidney disease? Circulation 2014; 129(5): 542–544. Search in Google Scholar

Onishi A, Fu Y, Patel R, Darshi M, Crespo-Masip M, Huang W, Song P, Freeman B, Kim YC, Soleimani M, Sharma K, Thomson SC, Vallon V. A role for tubular Na+/H+ exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin. Am J Physiol Renal Physiol 2020 Oct 1; 319(4): F712–F728. https://doi.org/10.1152/ajprenal.00264.2020. Epub 2020 Sep 7. PMID: 32893663; PMCID: PMC7642886. Search in Google Scholar

Bailey CJ, Day C, Bellary S. Renal Protection with SGLT2 Inhibitors: Effects in Acute and Chronic Kidney Disease. Curr Diab Rep 2022 Jan; 22(1): 39–52. https://doi.org/10.1007/s11892-021-01442-z. Epub 2022 Feb 3. PMID: 35113333; PMCID: PMC8888485. Search in Google Scholar