Otwarty dostęp

Mutually coupled dual-stage RC feedback LNA for RF applications


Zacytuj

A. Balankutty and P. R. Kinget, “An Ultra-Low Voltage, Low-Noise, High Linearity 900-MHz Receiver with Digitally Calibrated In-Band Feed-Forward Interferer Cancellation in 65-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 46, no. 10, pp. 2268-2283, 2011, doi: 10.1109/JSSC.2011.2161425. Search in Google Scholar

M. Parvizi, K. Allidina and M. N. El-Gamal, “A Sub-mW, Ultra-Low-Voltage, Wideband Low-Noise Amplifier Design Technique,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 6, pp. 1111-1122, 2015, doi: 10.1109/TVLSI.2014.2334642. Search in Google Scholar

B. Guo and X. Li, “A 1.6–9.7 GHz CMOS LNA Linearized by Post Distortion Technique,” IEEE Microwave and Wireless Components Letters, vol. 23, no. 11, pp. 608-610, 2013, doi: 10.1109/LMWC.2013.2281426. Search in Google Scholar

M. Parvizi, K. Allidina and M. N. El-Gamal, “An Ultra-Low-Power Wideband Inductorless CMOS LNA With Tunable Active Shunt-Feedback,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 6, pp. 1843-1853, 2016, doi: 10.1109/TMTT.2016.2562003. Search in Google Scholar

J-F. Chang, and Y-S. Lin. “0.99 mW 3–10 GHz common-gate CMOS UWB LNA using T-match input network and self-body-bias technique.” Electronics Letters, vol. 47, no. 11, pp. 658-659, 2011, doi: 10.1049/el.2011.0619. Search in Google Scholar

J. Shim, T. Yang, and J. Jeong. “Design of low power CMOS ultra wide band low noise amplifier using noise canceling technique.” Microelectronics Journal, vol. 44, no. 9, pp. 821-826, 2013, doi: https://doi.org/10.1016/j.mejo.2013.06.001. Search in Google Scholar

D. Kalra, V. Goyal and M. Srivastava. “A triple path noise cancellation LNA with transformer output using 45 nm CMOS technology.” Journal of Electrical Engineering, vol. 73, no. 5, pp 337-342, 2022, doi: https://doi.org/10.2478/jee-2022-0045. Search in Google Scholar

J. S. Walling, S. Shekhar and D. J. Allstot, “A gm-Boosted Current-Reuse LNA in 0.18μm CMOS,” 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Honolulu, HI, USA, pp. 613-616, 2007 doi: 10.1109/RFIC.2007.380958. Search in Google Scholar

Y.-S. Lin, C. -C. Wang, G. -L. Lee and C. -C. Chen, “High-Performance Wideband Low-Noise Amplifier Using Enhanced π-Match Input Network,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 3, pp. 200-202, March 2014, doi: 10.1109/LMWC.2013.2293666. Search in Google Scholar

M. Khurram and S. M. R. Hasan, “A 3–5 GHz Current-Reuse gm-Boosted CG LNA for Ultrawideband in 130 nm CMOS,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 3, pp. 400-409, March 2012, doi: 10.1109/TVLSI.2011.2106229. Search in Google Scholar

J. Li et al., “Analysis and Design of a 2-40.5 GHz Low Noise Amplifier with Multiple Bandwidth Expansion Techniques,” IEEE Access, vol. 11, pp. 13501-13509, 2023, doi: 10.1109/ACCESS.2023.3243090. Search in Google Scholar

Y.S. Lin and K.S. Lan. “W-band low-noise amplifier using λ/2-spiral-inductor-based positive feedback technique in 90 nm CMOS.” Analog Integrated Circuits and Signal Processing, vol. 99, no. 3, pp. 679-691, 2019, doi: https://doi.org/10.1007/s10470-019-01411-3. Search in Google Scholar

H. Wang, L. Zhang and Z. Yu, “A Wideband Inductorless LNA with Local Feedback and Noise Cancelling for Low-Power Low-Voltage Applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 8, pp. 1993-2005, 2010, doi: 10.1109/TCSI.2010.2042997. Search in Google Scholar

M. Kumar and V. K. Deolia. “Performance analysis of low power LNA using particle swarm optimization for wide band application.” AEU-International Journal of Electronics and Communications, vol. 111, pp. 152897, 2019, doi: https://doi.org/10.1016/j.aeue.2019.152897 Search in Google Scholar

X. Yan, H. Luo, J. Zhang, S. -P. Gao and Y. Guo, “A 9-to-42-GHz High-Gain Low-Noise Amplifier Using Coupled Interstage Feedback in 0.15-μm GaAs pHEMT Technology,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 4, pp. 1476-1488, 2023, doi: 10.1109/TCSI.2023.3238391 Search in Google Scholar

J. Y. -C. Liu, J. -S. Chen, C. Hsia, P. -Y. Yin and C. -W. Lu, “A Wideband Inductorless Single-to-Differential LNA in 0.18μm CMOS Technology for Digital TV Receivers,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 7, pp. 472-474, 2014, doi: 10.1109/LMWC.2014.2316495. Search in Google Scholar

J. Kim, S. Hoyos and J. Silva-Martinez, “Wideband Common-Gate CMOS LNA Employing Dual Negative Feedback with Simultaneous Noise, Gain, and Bandwidth Optimization,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 9, pp. 2340-2351, 2010, doi: 10.1109/TMTT.2010.2057790. Search in Google Scholar

H.-T. Chou, S. -W. Chen and H. -K. Chiou, “A low-power wideband dual-feedback LNA exploiting the gate-inductive bandwidth/gain-enhancement technique,” 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, pp. 1-3, 2013, doi: 10.1109/MWSYM.2013.6697349. Search in Google Scholar

C.-F. Liao and S.-I. Liu, “A Broadband Noise-Canceling CMOS LNA for 3.1–10.6-GHz UWB Receivers,” IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 329-339, 2007, doi: 10.1109/JSSC.2006.889356. Search in Google Scholar

eISSN:
1339-309X
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other