[
[1] V. B. Jeladze, T. R. Nozadze, V. A. Tabatadze, I. A. Petoev-Darsavelidze, M. M. Prishvin, and R. S. Zaridze, “Electromagnetic Exposure Study on a Human Located inside the Car Using the Method of Auxiliary Sources”, J. Commun. Technol. Electron., vol. 65, no. 5, pp. 457464, 2020, doi: 10.1134/S1064226920 050034.
]Otwórz DOISearch in Google Scholar
[
[2] V. Tabatadze, R. Zaridze, I. Petoev, B. Phoniava, and T. Tchabukiani, “Application of the method of auxiliary sources in the 3D antenna synthesis problems”, XX-th IEEE International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), pp. 8589, 2015.10.1109/DIPED.2015.7324261
]Search in Google Scholar
[
[3] M. Idemen and A. H. Serbest, “Boundary conditions of the electromagnetic field”, Electron. Lett., vol. 13, no. 23, pp. 704705, 1987.10.1049/el:19870501
]Search in Google Scholar
[
[4] I. V. Lindell and A. Sihvola, Boundary Conditions in Electromagnetics, John Wiley & Sons, 2019.10.1002/9781119632429
]Search in Google Scholar
[
[5] K. Karaçuha, V. Tabatadze, and E. I. Veliev, “Plane wave diffraction by strip with an integral boundary condition”, Turkish and J. Electr. Eng. Comput. Sci., vol. 28, no. 3, pp. 17761790, 2020.10.3906/elk-1906-170
]Search in Google Scholar
[
[6] K. Karaçuha, V. Tabatadze, Ö. F. Alperen, and E. Veliev, “A new approach in electromagnetic plane wave diffraction by two concentric slotted cylinders with variably placed slits: E and H polarized cases”, IET Microwaves, Antennas Propag., May 2022, doi: https://doi.org/10.1049/mia2.12252.10.1049/mia2.12252
]Search in Google Scholar
[
[7] T. L. Zinenko, A. I. Nosich, and Y. Okuno, “Plane wave scattering and absorption by resistive-strip and dielectric-strip periodic gratings”, IEEE Trans. Antennas Propag., vol. 46, no. 10, pp. 14981505, 1998.10.1109/8.725282
]Search in Google Scholar
[
[8] M. Lucido, F. Schettino, and G. Panariello, “Scattering from a thin resistive disk: A guaranteed fast convergence technique”, IEEE Trans. Antennas Propag., vol. 69, no. 1, pp. 387396, 2020.10.1109/TAP.2020.3008643
]Search in Google Scholar
[
[9] G. I. Koshovy, “Mathematical models of acoustic wave scattering by impedance strip”, XXII-nd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 2017, pp. 7174.10.1109/DIPED.2017.8100563
]Search in Google Scholar
[
[10] E. I. Veliev, T. Tsushima, K. Kobayashi, and S. Koshikawa, “Scattering by a strip with two different surface impedances”, International Symposium on Electromagnetic Compatibility (IEEE Cat), No. 99EX147, pp. 280283, 1999.
]Search in Google Scholar
[
[11] A. Buyukaksoy and G. Uzgoren, “Diffraction of high-frequency waves by a cylindrically curved surface with different face impedances”, IEEE Trans. Antennas Propag., vol. 36, no. 5, pp. 690695, 1988.10.1109/8.192146
]Search in Google Scholar
[
[12] V. Tabatadze, K. Karaçuha, Ö. F. Alperen, and E. Veliyev, “H-polarized plane wave diffraction by a slotted cylinder with different surface impedances: Solution by the analyticalNumerical approach”, IET Microwaves, Antennas Propag., 2022.10.1049/mia2.12301
]Search in Google Scholar
[
[13] R. W. Ziolkowski and J. B. Grant, “Scattering from cavity-backed apertures: The generalized dual series solution of the concentrically loaded e-pol slit cylinder problem”, IEEE Trans, Antennas Propag., vol. 35, no. 5, pp. 504528, 1987, DOI: 10.1109/TAP.1987.1144143.
]Otwórz DOISearch in Google Scholar
[
[14] A. I. Nosich, D. Colak, and A. Altintas, “H-wave scattering from a circularly curved impedance strip”, Proceedings of MELECON94, Mediterranean Electrotechnical Conference, 1994, pp. 446448.
]Search in Google Scholar
[
[15] F. Dikmen, E. Karaçuha, and Y. A. Tuchkin, “Scalar wave diffraction by a perfectly soft infinitely thin circular ring”, Turkish J. Electr. Eng. Comput. Sci., vol. 9, no. 2, pp. 199220, 2001.
]Search in Google Scholar
[
[16] T. Ikiz, S. Koshikawa, K. Kobayashi, E. I. Veliyev, and A. H. Serbest, “Solution of the Plane Wave Diffraction Problem By an Impedance Strip Using a Numerical-Analytical Method: E-Polarized Case”, J. Electromagn. Waves Appl., vol. 15, no. 3, pp. 315340, Jan. 2001, doi: 10.1163/156939301X00481.
]Otwórz DOISearch in Google Scholar
[
[17] M. Idemen and I. Akduman, “Some geometrical inverse problems connected with two-dimensional static fields”, SIAM J. Appl. Math., vol. 48, no. 3, pp. 703718, 1988.10.1137/0148040
]Search in Google Scholar
[
[18] H. Ibili, Y. Koyaz, U. Özmü, B. Karaosmanoĝlu, and Ö. Erĝül, “A novel surface-integral-equation formulation for efficient and accurate electromagnetic analysis of near-zero-index structures”, J. Opt., vol. 24, no. 3, pp. 35601, 2022.10.1088/2040-8986/ac3e01
]Search in Google Scholar
[
[19] Y. A. Tuchkin, F. Mazlumi, E. Sever, and F. Dikmen, “Contour Smoothing for Super-Algebraically Convergent Algorithms of 2D Di raction Problems”, IEEE Trans. Antennas Propag., 2022.10.1109/TAP.2022.3142243
]Search in Google Scholar
[
[20] T. Oĝuzer and D. Kutluay, “A Novel Impedance Matrix Localization For The Fast Modeling of 2D Electromagnetic Scattering Using The Localized Greens Function”, 2019 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF), pp. 12, 2019.10.1109/ISEF45929.2019.9097022
]Search in Google Scholar
[
[21] H. D. Basdemir, “Wave scattering by a perfect electromagnetic conductor wedge residing between isorefractive media”, Prog. Electromagn. Res. M, vol. 94, pp. 3139, 2020.10.2528/PIERM20050903
]Search in Google Scholar
[
[22] V. Tabatadze, K. Karaçuha, Ö. F. Alperen, S. Joof, and R. Zaridze, “A Simple Approach to Characterize a Buried Object under the Ground”, Prog., Electromagn. Res. M, vol. 109, pp. 89100, 2022.10.2528/PIERM22011205
]Search in Google Scholar
[
[23] F. Erden, A. A. Cosan, and O. A. Tretyakov, “Time-domain energetic properties of the TM-modes in a lossy waveguide”, 2017 25th Signal Processing and Communications Applications Conference (SIU), pp. 13, 2017.10.1109/SIU.2017.7960209
]Search in Google Scholar
[
[24] S. K. Kim and A. F. Peterson, “Electromagnetic Scattering From Strips Using the Subdomain Approach”, IEEE Antennas Wireless, Propag. Lett., vol. 21, no. 2, pp. 287291, 2021.10.1109/LAWP.2021.3128296
]Search in Google Scholar
[
[25] Y. Z. Umul, “Wave diffraction by a perfect electromagnetic conductor wedge”, Optik (Stuttg.), vol. 182, pp. 761765, 2019.10.1016/j.ijleo.2019.01.114
]Search in Google Scholar
[
[26] J. A. Kong, Theory of electromagnetic waves, New York, 1975.
]Search in Google Scholar
[
[27] W. C. Chew, Lectures on electromagnetic field theory, USA Purdue Univ., 2020.
]Search in Google Scholar
[
[28] A. Yapar, H. S¸ahintürk, and I. Akduman, “Electromagnetic scattering by an inhomogeneous impedance cylinder”, AEU-International J. Electron. Commun., vol. 56, no. 3, pp. 200204, 2002.10.1078/1434-8411-54100095
]Search in Google Scholar
[
[29] V. Tabatadze, K. Karaçuha, E. Veliyev, E. Karaçuha, and R. Zaridze, “The Electric Field Calculation for Mobile Communication Coverage in Buildings and Indoor Areas by Using the Method of Auxiliary Sources”, Complexity, pp. 4563859, 2020, doi: 10.1155/2020/4563859.
]Otwórz DOISearch in Google Scholar
[
[30] C. A. Balanis, Advanced engineering electromagnetics, John Wiley & Sons, 1999.
]Search in Google Scholar
[
[31] W. C. Gibson,, The method of moments in electromagnetics, CRC Press, 2014.10.1201/b17119
]Search in Google Scholar
[
[32] V. Tabatadze, K. Karaçuha, and E. I. Veliyev, “The solution of the plane wave diffraction problem by two strips with different fractional boundary conditions”, J. Electromagn. Waves Appl., vol. 34, no. 7, pp. 881893, May 2020, doi: 10.1080/09205071.2020.1759461.
]Otwórz DOISearch in Google Scholar
[
[33] E. I. Veliyev, V. Tabatadze, K. Karaçuha, and E. Karaçuha, “The diffraction by the half-plane with the fractional boundary condition”, Prog. Electromagn. Res., vol. 88, pp. 101110, 2020.10.2528/PIERM19102408
]Search in Google Scholar
[
[34] K. Gibson, The Ovals of Cassini, 2007.
]Search in Google Scholar