Otwarty dostęp

Role of earth-abundant selenium in different types of solar cells

   | 12 maj 2021

Zacytuj

[1] T. K. Teodor, S. Singh, D. M. Bishop, O. Gunawan, Y. S. Lee, T. S. Gershon, K. W. Brew, P. D. Antunez, and R. Haight, “Ultrathin high band gap solar cells with improved efficiencies from the worlds oldest photovoltaic material”, Nat. Commun., vol. 8, no. 1, pp. 682, Sep. 2017, doi: 10.1038/s41467-017-00582-9.10.1038/s41467-017-00582-9561303328947765 Search in Google Scholar

[2] S. Almosni et al, “Material challenges for solar cells in the twenty-first century: directions in emerging technologies”, Sci. Technol. Adv. Mater.,, vol. 19, no. 1, pp. 336-369., Apr. 2018, doi: 10.1080/14686996.2018.1433439.10.1080/14686996.2018.1433439591743629707072 Search in Google Scholar

[3] P. Colter, B. Hagar, and S. Bedair, “Tunnel Junctions for III-V Multijunction Solar Cells Review” Crystals, vol. 8, no. 12, pp. 445-459, Nov. 2018, doi: 10.3390/cryst8120445.10.3390/cryst8120445 Search in Google Scholar

[4] M. Ochoa, E. Barrigon, L. Barrutia, I. Garcia, I. Rey-Stolle, and C. Algora, “Limiting factors on the semiconductor structure of III-V multijunction solar cells for ultra-high concentration (1000-5000 suns): Limiting factors of multijunction solar cells for ultra-high concentration”, Prog. Photovolt., vol. 24, no. 10, pp. 1332-1345, Jun. 2016, doi: 10.1002/pip.2791.10.1002/pip.2791 Search in Google Scholar

[5] G. A. Landis, “Selenium interlayer for high-efficiency multijunction solar cell”, US patent US9418844B1, Aug. 16, 2016. Search in Google Scholar

[6] E. E. Perl, J. Simon, J. F. Geisz, W. Olavarria, M. Young, A. Duda, P. Dippo, D. J. Friedman, and M. A. Steiner (2015), “Development of a 2.0 eV AlGaInP Solar Cell Grown by OMVPE”, Presented at IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, Jun. 14-19, 2015. Search in Google Scholar

[7] T. Dey, “Magnetic nanoparticles and cellulosic nanofibers to remove arsenic and other heavy metals from water”, Nanotechnology for water purification (Ed) T. Dey, Boca Raton, USA: Universal Publishers, 2012, pp. 1-28. Search in Google Scholar

[8] A. Kunioka and T. Nakada, “High-efficiency selenium photovoltaic solar cells”, Jpn. J. Appl. Phys., vol. 21, no. S2, pp. 73-75, 1982.10.7567/JJAPS.21S2.73 Search in Google Scholar

[9] T. Dey and D. Naughton, “Nano-porous sol-gel derived hydrophobic glass coating for increased light transmittance through greenhouse”, Mater. Res. Bull., vol. 116, pp. 126-130, Aug. 2019, doi: 10.1016/j.materresbull.2019.04.027.10.1016/j.materresbull.2019.04.027 Search in Google Scholar

[10] T. Nakada and A. Kunioka, “Polycrystalline thin-film TiO2 /Se solar cells”, Jpn. J. Appl. Phys., vol. 24, no. 7A, pp. L536-L538, 1985.10.1143/JJAP.24.L536 Search in Google Scholar

[11] K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, V. P. S. Perera, and G. M. L. P. Aponsu, “Nanoporous n-TiO2 /selenium/p-CuCNS photovoltaic cell”, J. Phys. D: Appl. Phys., vol. 31, no. 18, pp. 2326-2330, June 1998, doi: 10.1088/0022-3727/31/18 /019. Search in Google Scholar

[12] K.Wang, Y. Shi, H. Zhang, Y. Xing, Q. Dong, and T. Ma, “Selenium as photoabsorber for inorganicorganic hybrid solar cells”, Phys. Chem. Chem. Phys., vol. 16, no. 42, pp. 23316-23319, Nov. 2014, doi: 10.1039/c4cp02821j.10.1039/C4CP02821J25259378 Search in Google Scholar

[13] Y. Tang, “Copper indium gallium selenide thin film solar cells”, Nanostructured solar cells, (Ed) N. Das, InTech Open, 2017, doi: 10.5772/65291.10.5772/65291 Search in Google Scholar

[14] A. E. Zaghi, M. Buffiere, J. Koo, G. Brammertz, M. Batuk, C. Verbist, J. Hadermann, W. K. Kim, M. Meuris, J. Poortmans, and J. Vleugels, “Effect of selenium content of CuInSex alloy nanopowder precursors on recrystallization of printed CuInSe2 absorber layers during selenization heat treatment”, lThin Solid Films, vol. 582, pp. 11-17, May 2015, doi: 10.1016/j.tsf.2014.10.003.10.1016/j.tsf.2014.10.003 Search in Google Scholar

[15] L. Etgar, “Semiconductor nanocrystals as light harvesters in solar cells”, Materials, vol. 6, no. 2, pp. 445-459, Feb. 2013, doi: 10.3390/ma6020445.10.3390/ma6020445545209128809318 Search in Google Scholar

[16] J. Yang, J-Y Kim, J. H. Yu, T-Y Ahn, H. Lee, T-S Choi, Y-W Kim, J. Joo, M. J. Ko, and T. Hyeon, “Copper-indium-selenide quantum dot-sensitized solar cells”, Phys. Chem. Chem. Phys., vol. 15, no. 47, pp. 20517-20525, Nov. 2013, doi: 10.1039/c3cp 54270j. Search in Google Scholar

[17] L. Yang, C. McCue, Q. Zhang, E. Uchaker, Y. Mai, and G. Cao, “Highly efficient quantum dot- sensitized TiO2 solar cells based on multilayered semiconductors (ZnSe/CdS/CdSe)”, Nanoscale, vol. 7, no. 7, pp. 3173-3180, Dec. 2014, doi: 10.1039/C4NR06935H.10.1039/C4NR06935H Search in Google Scholar

[18] M. Zhou, G. Shen, Z. Pan, and X. Zhong, “Selenium cooperated polysulfide electrolyte for efficiency enhancement of quantum dot-sensitized solar cells”, J. Energy Chem., vol. 38, pp. 147-152, Nov. 2019, doi: 10.1016/j.jechem.2018.12.010.10.1016/j.jechem.2018.12.010 Search in Google Scholar

[19] K.W. Jonhston, A. G. Pattantyus-Abraham, J. P. Clifford, S. H. Myrskog, D. D. MacNeil, L. Levina, and E. H. Sargent “Schottky-quantum dot photovoltaics for efficient infrared power conversion” Appl. Phys. Lett. vol. 92, no. 15, pp. 151115:1-151115:3, Apr. 2008, doi: 10.1063/1.2912340.10.1063/1.2912340 Search in Google Scholar

[20] D. Ratan, T. Jiang, D. A. Barkhouse, W. Xihua, G. P-A Andras, B. Lukasz, L. Larissa, and E. H. Sargent, “Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles”, J. Am. Chem. Soc.,, vol. 132, no. 17, pp. 5952-5953, Apr. 2010, doi: 10.1021/ja1013695.10.1021/ja101369520387887 Search in Google Scholar

[21] O. P. Yadav, Y. K. Yadav, A. R. Das, T. Dey, S. Kakkar, and M. L. Singla, “Catalytic oxidation of carbonmonoxide using platinum nanoparticles synthesized in microemulsion”, Asian J. Sci. Res.,, vol. 1, no. 1, pp. 79-84, 2008, doi: 10.3923/ajsr.2008.79.84.10.3923/ajsr.2008.79.84 Search in Google Scholar

[22] P. Liu, L. Kloo, and J.M. Gardner, “Cross-linked sulfur-selenium polymers as hole-transporting materials in dye-sensitized solar cells and perovskite solar cells”, ChemPhotoChem, vol. 1, no. 8, pp. 363-368, Aug. 2017, doi: 10.1002/cptc.201700037.10.1002/cptc.201700037 Search in Google Scholar

[23] M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells”, Nat. Photonics, vol. 8, no. 7, pp. 506-514, Jul. 2014, doi: 10.1038/NPHOTON.2014.134.10.1038/nphoton.2014.134 Search in Google Scholar

[24] S. P. Singh and P. Nagarjuna, “Organometal halide perovskites as useful materials in sensitized solar cells”, Dalton Trans.,, vol. 43, no. 14, pp. 5247-5251, Feb. 2014, doi: 10.1039/c3dt53503g.10.1039/c3dt53503g24577264 Search in Google Scholar

[25] T. Dey, “UV-reflecting sintered nano-TiO2 thin film on glass for anti-bird strike application”, Surf. Eng., July 2020, doi: 10.1080/02670844.2020.1796900.10.1080/02670844.2020.1796900 Search in Google Scholar

[26] Z. Huo, S-H Wei, and W-J Yin, “High-throughput screening of chalcogenide single perovskites by first-principles calculations for photovoltaics”, J. Phys. D Appl. Phys., vol. 51, no. 47, Art no. 474003, Sep. 2018, doi: 10.1088/1361-6463/aae1ee.10.1088/1361-6463/aae1ee Search in Google Scholar

[27] Y. Peng, Q. Sun, H. Chen, and W-J Yin, “Disparity of the Nature of the Band Gap between Halide and Chalcogenide Single Perovskites for Solar Cell Absorbers”, J. Phys. Chem. Lett., vol. 10, no. 16, pp. 4566-4570, Aug. 2019, doi: 10.1021/acs.jpclett.9b01657.10.1021/acs.jpclett.9b0165731340644 Search in Google Scholar

[28] Y. Y. Sun, M. L. Agiorgousis, P. Zhang, and S. Zhang, “Chalco-genide Perovskites for Photovoltaics”, Nano Lett., vol. 15, no. 1, pp. 581-585, Jan. 2015, doi: 10.1021/nl504046x.10.1021/nl504046x25548882 Search in Google Scholar

[29] Y. Nishigaki, T. Nagai, M. Nishiwaki, T. Aizawa, M. Kozawa, K. Hanzawa, Y. Kato, H. Sai, H. Hiramatsu, H. Hosono and H. Fujiwara, “Extraordinary Strong Band-Edge Absorption in Distorted Chalcogenide Perovskites”, Sol. RRL, vol. 4, no. 5, Art no. 1900555, Jan. 2020, doi: 10.1002/solr.201900555.10.1002/solr.201900555 Search in Google Scholar

[30] T. Dey and D. Naughton, “Cheap non-toxic non-corrosive method of glass cleaning evaluated by contact angle, AFM, and SEM-EDX measurements”, Environ. Sci. Pollut. Res., vol. 24, no. 15, pp. 13373-13383, May. 2017, doi: 10.1007/s11356-017-8926-4.10.1007/s11356-017-8926-428386893 Search in Google Scholar

[31] A. Chatterjee, T. Dey, S. K. Sanyal, and S. P. Moulik, “Thermodynamics of micelle formation and surface chemical behaviour of p-tert-octylphenoxypolyethylene ether (Triton X-100) in aqueous medium”, J. Surface Sci. Technol., vol. 17, no. 1-2, pp. 1-15, 2001. Search in Google Scholar

[32] N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, “Thermodynamic efficiency limit of excitonic solar cells”, Phys. Rev. B, vol. 83, no. 19, Art no. 195326, May 2011, doi: 10.1103/PhysRevB.83.195326.10.1103/PhysRevB.83.195326 Search in Google Scholar

[33] W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells”, J. Appl. Phys.,, vol. 32, no. 3, pp. 510-519, 1961, doi: 10.1063/1.1736034.10.1063/1.1736034 Search in Google Scholar

[34] R. V. Angadi, B. Revanasiddesh, and P. K. Vineet Kumar, “A review on different types of materials employed in solar photovoltaic panel”, Int. J. Eng. Res. Technol., vol. 7, no. 8, Art no IJERTCONV7IS08084, 2019. Search in Google Scholar

[35] J. Jean, J. Xiao, R. Nick, N. Moody, M. Nasilowski, M. Bawendi, and V. Bulovi´c, “Synthesis cost dictates the commercial viability of lead sulfide and perovskite quantum dot photovoltaics”, Energy Environ. Sci., vol. 11, no. 9, pp. 2295-2305, Jul. 2018, doi: 10.1039/C8EE01348A.10.1039/C8EE01348A Search in Google Scholar

eISSN:
1339-309X
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other