Zacytuj

[1] US Canadian Power System Outage Task Force, “Interim Report Causes of the November 14 Blackout in the United States and Canada”, pp. 71, 2003.Search in Google Scholar

[2] F. O. Igbinovia, G. Fandi, J. Svec, Z. Müller, and J. Tlusty, “Comparative Review of Reactive Power Compensation Technologies”, IEEE 16th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, pp. 2–7, 2015.10.1109/EPE.2015.7161066Search in Google Scholar

[3] F. O. Igbinovia, G. Fandi, Z. M´’uller, J. Svec, and J. Tlusty, “Cost Implication Reactive Power Generating Potential of the Synchronous Condenser”, IEEE 2nd International Conference on Intelligent Green Building Smart Grid (IGBSG) Prague, pp. 1–6, 2016.10.1109/IGBSG.2016.7539450Search in Google Scholar

[4] F. O. Igbinovia, G. Fandi, Z. M´’uller, J. Svec, and J. Tlusty, “Optimal Location of the Synchronous Condenser in Electric-Power System Networks”, IEEE 17th International Scientific Conference on Electric Power Engineering (EPE) Prague, pp. 1–6, 2016.10.1109/EPE.2016.7521731Search in Google Scholar

[5] M. Ross and S. Kalsi, “Applications of Superconducting Synchronous Condensers in Wind Power Integration”, IEEE PES Transmission Distribution Conference Exhibition Dallas, pp. 272-277, 2006.Search in Google Scholar

[6] F. O. Igbinovia, G. Fandi, Z. M´’uller, and J. Tlusty, “Progressive Usage of the Synchronous Machine in Electrical Power Systems”, Indian Journal of Engineering, vol. 15, pp. 117–126, 2018.Search in Google Scholar

[7] F. O. Igbinovia, G. Fandi, Z. M´’uller, and J. Tlusty, “Reputation of the Synchronous Condenser Technology in Modern Power Grid” Proceedings of the 11th International Conference on Power System Technology (POWERCON) Guangzhou, pp. 2108-2115, 2018.10.1109/POWERCON.2018.8601540Search in Google Scholar

[8] N. Masood, R. Yan, T. K. Saha, and S. Bartlett, “Post-Retirement Utilisation of Synchronous Generators to Enhance Security Performances in a Wind Dominated Power System”, IET Generation Transmission & Distribution vol. 10, no. 13, pp. 3314–3321, 2016.10.1049/iet-gtd.2016.0267Search in Google Scholar

[9] Energy Dept, Reports: US [Online], http://energy.gov, 2013,.Search in Google Scholar

[10] F. O. Igbinovia, G. Fandi, I. Ahmad, Z. Müller, and J. Tlusty, “Modeling Simulation of the Anticipated Effects of the Synchronous Condenser on an Electric-Power Network with Participating Wind Plants”, Sustainability vol. 10, no. 12, 4834, 2018.10.3390/su10124834Search in Google Scholar

[11] S. Heier, “Grid Integration of Wind Energy Conversion Systems”, 2nd ed, John Wiley & Sons 2006.Search in Google Scholar

[12] J. Dai, D. Liu, L. Wen, and X. Long, “Research on Power Coefficient of Wind Turbines based on SCADA Data”, Renewable Energy vol. 86, pp. 206–215, 2016.10.1016/j.renene.2015.08.023Search in Google Scholar

[13] A. Tummala, R. K. Velamati, D. K. Sinha, V. Indrajac, and V. H. Krishnad, “A Review on Small Scale Wind Turbines”, Renewable Sustainable Energy Reviews vol 56, pp. 1351–1371, 2016.10.1016/j.rser.2015.12.027Search in Google Scholar

[14] J. Lopez, E. Gubia, E. Olea, J. Ruiz, and L. Marroyo, “Ride through of Wind Turbines with Doubly Fed Induction Generator under Symmetrical Voltage Dips”, IEEE Transactions on Industrial Electronics vol. 56, no. 10, pp. 4246–4254, 2009.10.1109/TIE.2009.2028447Search in Google Scholar

[15] S. A. Eisa, W. Stone, and W. K. Wedeward, “Mathematical Modeling, Stability, Bifurcation Analysis”, IEEE Ninth Annual Green Technologies Conference (GreenTech) Denver, pp. 334–341, 2017.Search in Google Scholar

[16] N. W. Miller, J. J. Sanchez-Gasca, W. W. Price, and R. W. Delmerico, “Dynamic Modeling of GE 1.5 and 3.6 MW Wind Turbine-Generators for Stability Simulations”, IEEE Power Engineering Society General Meeting Toronto, pp. 1977–1983, 2003.Search in Google Scholar

[17] R. Pena, J. C. Clare, and G. M. Asher, “Doubly Fed Induction Generator using Back-to-Back PWM Converters its Application to Variable-Speed Wind-Energy Generation”, IEE Proceedings-Electric Power Applications vol. 143, no. 3, pp. 231–241, 1996.10.1049/ip-epa:19960288Search in Google Scholar

[18] L. Xu and P. Cartwright, “Direct Active Reactive Power Control of DFIG for Wind Energy Generation”, IEEE Transactions on energy conversion vol. 21, no. 3, pp. 750–758, 2006.10.1109/TEC.2006.875472Search in Google Scholar

[19] B. C. Rabelo, W. Hofmann, J. L. da Silva, R. G. de Oliveira, and S. R. Silva, “Reactive Power Control Design in Doubly Fed Induction Generators for Wind Turbines”, IEEE Transactions on Industrial Electronics vol. 56, no. 10, pp. 4154–4162, 2009.10.1109/TIE.2009.2028355Search in Google Scholar

[20] E. Tremblay, S. Atayde, and A. Chandra, “Comparative Study of Control Strategies for the Doubly Fed Induction Generator in Wind Energy Conversion Systems: A DSP-based Implementation Approach”, IEEE Transactions on sustainable energy vol. 2, no. 3, pp. 288–299, 2011.10.1109/TSTE.2011.2113381Search in Google Scholar

[21] S. Li, T. A. Haskew, K. A. Williams, and R. P. Swatloski, “Control of DFIG Wind Turbine with Direct-Current Vector Control Configuration”, IEEE transactions on Sustainable Energy vol. 3, no. 1, pp. 1–11, 2012.10.1109/TSTE.2011.2167001Search in Google Scholar

[22] H. T. Le and S. Santoso, “Operating Compressed-Air Energy Storage as Dynamic Reactive Compensator for Stabilising Wind Farms under Grid Fault Conditions”, IET Renewable Power Generation vol. 7, no. 6, pp. 717–726, 2013.10.1049/iet-rpg.2011.0247Search in Google Scholar

[23] G. Fandi, I. Ahmad, F. O. Igbinovia, Z. Müller, J. Tlusty, and V. Krepl, “Voltage Regulation Power Loss Minimization in Radial Distribution Systems via Reactive Power Injection Distributed Generation Unit Placement”, Energies vol. 11, p. 1399, 2018.10.3390/en11061399Search in Google Scholar

eISSN:
1339-309X
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other