Zacytuj

Abramo, G. (2018). Revisiting the scientometric conceptualization of impact and its measurement. Journal of Informetrics, 12(3), 590–597. https://doi.org/10.1016/j.joi.2018.05.001AbramoG.2018Revisiting the scientometric conceptualization of impact and its measurementJournal of Informetrics123590597https://doi.org/10.1016/j.joi.2018.05.00110.1016/j.joi.2018.05.001Search in Google Scholar

Akbarzadeh, A., Johnson, P., & Singh, R. (2009). Examining potential benefits of combining a chimney with a salinity gradient solar pond for production of power in salt affected areas. Solar Energy, 83(8), 1345–1359. https://doi.org/10.1016/j.solener.2009.02.010AkbarzadehA.JohnsonP.SinghR.2009Examining potential benefits of combining a chimney with a salinity gradient solar pond for production of power in salt affected areasSolar Energy83813451359https://doi.org/10.1016/j.solener.2009.02.01010.1016/j.solener.2009.02.010Search in Google Scholar

Alcaraz, A., Montalà, M., Cortina, J.L., Akbarzadeh, A., Aladjem, C., Farran, A., & Valderrama, C. (2018). Design, construction, and operation of the first industrial salinity-gradient solar pond in Europe: An efficiency analysis perspective. Solar Energy, 164, 316–326. https://doi.org/10.1016/j.solener.2018.02.053AlcarazA.MontalàM.CortinaJ.L.AkbarzadehA.AladjemC.FarranA.ValderramaC.2018Design, construction, and operation of the first industrial salinity-gradient solar pond in Europe: An efficiency analysis perspectiveSolar Energy164316326https://doi.org/10.1016/j.solener.2018.02.05310.1016/j.solener.2018.02.053Search in Google Scholar

Arroyo, A., Castro, P., Manana, M., Domingo, R., & Laso, A. (2018). CO2 footprint reduction and efficiency increase using the dynamic rate in overhead power lines connected to wind farms. Applied Thermal Engineering, 130, 1156–1162. https://doi.org/10.1016/j.applthermaleng.2017.11.095ArroyoA.CastroP.MananaM.DomingoR.LasoA.2018CO2 footprint reduction and efficiency increase using the dynamic rate in overhead power lines connected to wind farmsApplied Thermal Engineering13011561162https://doi.org/10.1016/j.applthermaleng.2017.11.09510.1016/j.applthermaleng.2017.11.095Search in Google Scholar

Ayyarao, T.S.L.V. (2019). Modified vector controlled DFIG wind energy system based on barrier function adaptive sliding mode control. Protection and Control of Modern Power Systems, 4(1), 1–8. https://doi.org/10.1186/s41601-019-0119-3AyyaraoT.S.L.V.2019Modified vector controlled DFIG wind energy system based on barrier function adaptive sliding mode controlProtection and Control of Modern Power Systems4118https://doi.org/10.1186/s41601-019-0119-310.1186/s41601-019-0119-3Search in Google Scholar

Azhari, A.W., Sopian, K., Zaharim, A., & Al Ghoul, M. (2008). A new approach for predicting solar radiation in tropical environment using satellite images – Case study of Malaysia. WSEAS Transactions on Environment and Development, 4(4), 373–378.AzhariA.W.SopianK.ZaharimA.Al GhoulM.2008A new approach for predicting solar radiation in tropical environment using satellite images – Case study of MalaysiaWSEAS Transactions on Environment and Development44373378Search in Google Scholar

Baierle, I.C., Schaefer, J.L., Sellitto, M.A., Fava, L.P., Furtado, J.C., & Nara, E.O.B. (2020). Moona software for survey classification and evaluation of criteria to support decision-making for properties portfolio. International Journal of Strategic Property Management, 24(4), 226–236. https://doi.org/10.3846/ijspm.2020.12338BaierleI.C.SchaeferJ.L.SellittoM.A.FavaL.P.FurtadoJ.C.NaraE.O.B.2020Moona software for survey classification and evaluation of criteria to support decision-making for properties portfolioInternational Journal of Strategic Property Management244226236https://doi.org/10.3846/ijspm.2020.1233810.3846/ijspm.2020.12338Search in Google Scholar

Bakhtyar, B., Saadatian, O., Alghoul, M.A., Ibrahim, Y., & Sopian, K. (2015). Solar electricity market in Malaysia: A review of feed-in tariff policy. Environmental Progress and Sustainable Energy, 34(2), 600–606. https://doi.org/10.1002/ep.12023BakhtyarB.SaadatianO.AlghoulM.A.IbrahimY.SopianK.2015Solar electricity market in Malaysia: A review of feed-in tariff policyEnvironmental Progress and Sustainable Energy342600606https://doi.org/10.1002/ep.1202310.1002/ep.12023Search in Google Scholar

Bakhtyar, B., Sopian, K., Zaharim, A., Salleh, E., & Lim, C.H. (2013). Potentials and challenges in implementing feed-in tariff policy in Indonesia and the Philippines. Energy Policy, 60, 418–423. https://doi.org/10.1016/j.enpol.2013.05.034BakhtyarB.SopianK.ZaharimA.SallehE.LimC.H.2013Potentials and challenges in implementing feed-in tariff policy in Indonesia and the PhilippinesEnergy Policy60418423https://doi.org/10.1016/j.enpol.2013.05.03410.1016/j.enpol.2013.05.034Search in Google Scholar

Battaglini, A., Komendantova, N., Brtnik, P., & Patt, A. (2012). Perception of barriers for expansion of electricity grids in the European Union. Energy Policy, 47, 254–259. https://doi.org/10.1016/j.enpol.2012.04.065BattagliniA.KomendantovaN.BrtnikP.PattA.2012Perception of barriers for expansion of electricity grids in the European UnionEnergy Policy47254259https://doi.org/10.1016/j.enpol.2012.04.06510.1016/j.enpol.2012.04.065Search in Google Scholar

Batty, M., & Gleeson, B. (2003). The geography of scientific citation + The Difference that Planning Makes. Environment and Planning A, 35, 761–770. https://doi.org/10.1068/a3505comBattyM.GleesonB.2003The geography of scientific citation + The Difference that Planning MakesEnvironment and Planning A35761770https://doi.org/10.1068/a3505com10.1068/a3505comSearch in Google Scholar

Ben Jebli, M., Ben Youssef, S., & Apergis, N. (2019). The dynamic linkage between renewable energy, tourism, CO2 emissions, economic growth, foreign direct investment, and trade. Latin American Economic Review, 28, 2. https://doi.org/10.1186/s40503-019-0063-7Ben JebliM.Ben YoussefS.ApergisN.2019The dynamic linkage between renewable energy, tourism, CO2 emissions, economic growth, foreign direct investment, and tradeLatin American Economic Review282https://doi.org/10.1186/s40503-019-0063-710.1186/s40503-019-0063-7Search in Google Scholar

Benchaabane, Y., Silva, R.E., Ibrahim, H., Ilinca, A., Chandra, A., & Rousse, D.R. (2019). Computer Model for Financial, Environmental and Risk Analysis of a Wind–Diesel Hybrid System with Compressed Air Energy Storage. Energies, 12(21), 4054. https://doi.org/10.3390/en12214054BenchaabaneY.SilvaR.E.IbrahimH.IlincaA.ChandraA.RousseD.R.2019Computer Model for Financial, Environmental and Risk Analysis of a Wind–Diesel Hybrid System with Compressed Air Energy StorageEnergies12214054https://doi.org/10.3390/en1221405410.3390/en12214054Search in Google Scholar

Bernad, F., Casas, S., Gibert, O., Akbarzadeh, A., Cortina, J.L., & Valderrama, C. (2013). Salinity gradient solar pond: Validation and simulation model. Solar Energy, 98(Part C), 366–374. https://doi.org/10.1016/j.solener.2013.10.004BernadF.CasasS.GibertO.AkbarzadehA.CortinaJ.L.ValderramaC.2013Salinity gradient solar pond: Validation and simulation modelSolar Energy98Part C366374https://doi.org/10.1016/j.solener.2013.10.00410.1016/j.solener.2013.10.004Search in Google Scholar

Biddinika, M.K., Diponegoro, A.M., Ali, R.M., Rosyadi, R.I., Tokimatsu, K., & Takahashi, F. (2017). Survey on readability of online information for upgrading understandability of biomass energy technology. Journal of Material Cycles and Waste Management, 19(3), 1069–1076. https://doi.org/10.1007/s10163-017-0596-2BiddinikaM.K.DiponegoroA.M.AliR.M.RosyadiR.I.TokimatsuK.TakahashiF.2017Survey on readability of online information for upgrading understandability of biomass energy technologyJournal of Material Cycles and Waste Management19310691076https://doi.org/10.1007/s10163-017-0596-210.1007/s10163-017-0596-2Search in Google Scholar

Börner, K., Chen, C., & Boyack, K.W. (2005). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179–255. https://doi.org/10.1002/aris.1440370106BörnerK.ChenC.BoyackK.W.2005Visualizing knowledge domainsAnnual Review of Information Science and Technology371179255https://doi.org/10.1002/aris.144037010610.1002/aris.1440370106Search in Google Scholar

Börner, K., Klavans, R., Patek, M., Zoss, A.M., Biberstine, J.R., Light, R.P., Larivière, V., & Boyack, K.W. (2012). Design and update of a classification system: The ucsd map of science. PLoS ONE, 7(7), e39464. https://doi.org/10.1371/journal.pone.0039464BörnerK.KlavansR.PatekM.ZossA.M.BiberstineJ.R.LightR.P.LarivièreV.BoyackK.W.2012Design and update of a classification system: The ucsd map of sciencePLoS ONE77e39464https://doi.org/10.1371/journal.pone.003946410.1371/journal.pone.0039464339564322808037Search in Google Scholar

Busuttil, A., Krajačić, G., & Duić, N. (2008). Energy scenarios for Malta. International Journal of Hydrogen Energy, 33(16), 4235–4246. https://doi.org/10.1016/j.ijhydene.2008.06.010BusuttilA.KrajačićG.DuićN.2008Energy scenarios for MaltaInternational Journal of Hydrogen Energy331642354246https://doi.org/10.1016/j.ijhydene.2008.06.01010.1016/j.ijhydene.2008.06.010Search in Google Scholar

Cabeza, L.F., Galindo, E., Prieto, C., Barreneche, C., & Inés Fernández, A. (2015). Key performance indicators in thermal energy storage: Survey and assessment. Renewable Energy, 83, 820–827. https://doi.org/10.1016/j.renene.2015.05.019CabezaL.F.GalindoE.PrietoC.BarrenecheC.Inés FernándezA.2015Key performance indicators in thermal energy storage: Survey and assessmentRenewable Energy83820827https://doi.org/10.1016/j.renene.2015.05.01910.1016/j.renene.2015.05.019Search in Google Scholar

Cabeza, L.F., Solé, A., Fontanet, X., Barreneche, C., Jové, A., Gallas, M., Prieto, C., & Fernández, A.I. (2017). Thermochemical energy storage by consecutive reactions for higher efficient concentrated solar power plants (CSP): Proof of concept. Applied Energy, 185(Part 1), 836–845. https://doi.org/10.1016/j.apenergy.2016.10.093CabezaL.F.SoléA.FontanetX.BarrenecheC.JovéA.GallasM.PrietoC.FernándezA.I.2017Thermochemical energy storage by consecutive reactions for higher efficient concentrated solar power plants (CSP): Proof of conceptApplied Energy185Part 1836845https://doi.org/10.1016/j.apenergy.2016.10.09310.1016/j.apenergy.2016.10.093Search in Google Scholar

Carrington, P., Scott, J., & Wasserman, S. (2005). Models and methods in social network analysis. Cambridge University Press. https://books.google.com.br/books?hl=pt-BR&lr=&id=4Ty5xP_KcpAC&oi=fnd&pg=PR9&dq=%22Models+and+methods+in+social+network+analysis%22&ots=9NJLv7tbJ3&sig=nBeqcDbBSs5PmezJX3DaVorpS00CarringtonP.ScottJ.WassermanS.2005Models and methods in social network analysisCambridge University Presshttps://books.google.com.br/books?hl=pt-BR&lr=&id=4Ty5xP_KcpAC&oi=fnd&pg=PR9&dq=%22Models+and+methods+in+social+network+analysis%22&ots=9NJLv7tbJ3&sig=nBeqcDbBSs5PmezJX3DaVorpS0010.1017/CBO9780511811395Search in Google Scholar

Chakraborty, S., Senjyu, T., Saber, A.Y., Yona, A., & Funabashi, T. (2009). Optimal thermal unit commitment integrated with renewable energy sources using advanced particle swarm optimization. IEEJ Transactions on Electrical and Electronic Engineering, 4(5), 609–617. https://doi.org/10.1002/tee.20453ChakrabortyS.SenjyuT.SaberA.Y.YonaA.FunabashiT.2009Optimal thermal unit commitment integrated with renewable energy sources using advanced particle swarm optimizationIEEJ Transactions on Electrical and Electronic Engineering45609617https://doi.org/10.1002/tee.2045310.1002/tee.20453Search in Google Scholar

Chel, A., & Kaushik, G. (2018). Renewable energy technologies for sustainable development of energy efficient building. Alexandria Engineering Journal, 57(2), 655–669. https://doi.org/10.1016/j.aej.2017.02.027ChelA.KaushikG.2018Renewable energy technologies for sustainable development of energy efficient buildingAlexandria Engineering Journal572655669https://doi.org/10.1016/j.aej.2017.02.02710.1016/j.aej.2017.02.027Search in Google Scholar

Chen, C., Li, Y., Song, J., Yang, Z., Kuang, Y., Hitz, E., Jia, C., Gong, A., Jiang, F., Zhu, J.Y., Yang, B., Xie, J., & Hu, L. (2017). Highly Flexible and Efficient Solar Steam Generation Device. Advanced Materials, 29(30), 1701756. https://doi.org/10.1002/adma.201701756ChenC.LiY.SongJ.YangZ.KuangY.HitzE.JiaC.GongA.JiangF.ZhuJ.Y.YangB.XieJ.HuL.2017Highly Flexible and Efficient Solar Steam Generation DeviceAdvanced Materials29301701756. https://doi.org/10.1002/adma.20170175610.1002/adma.20170175628605077Search in Google Scholar

Child, M., Ilonen, R., Vavilov, M., Kolehmainen, M., & Breyer, C. (2019). Scenarios for sustainable energy in Scotland. Wind Energy, 22(5), 666–684. https://doi.org/10.1002/we.2314ChildM.IlonenR.VavilovM.KolehmainenM.BreyerC.2019Scenarios for sustainable energy in ScotlandWind Energy225666684https://doi.org/10.1002/we.231410.1002/we.2314Search in Google Scholar

Child, M., Nordling, A., & Breyer, C. (2017). Scenarios for a sustainable energy system in the Åland Islands in 2030. Energy Conversion and Management, 137, 49–60. https://doi.org/10.1016/j.enconman.2017.01.039ChildM.NordlingA.BreyerC.2017Scenarios for a sustainable energy system in the Åland Islands in 2030Energy Conversion and Management1374960https://doi.org/10.1016/j.enconman.2017.01.03910.1016/j.enconman.2017.01.039Search in Google Scholar

Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E., & Herrera, F. (2011a). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1), 146–166. https://doi.org/10.1016/j.joi.2010.10.002CoboM.J.López-HerreraA.G.Herrera-ViedmaE.HerreraF.2011aAn approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory fieldJournal of Informetrics51146166https://doi.org/10.1016/j.joi.2010.10.00210.1016/j.joi.2010.10.002Search in Google Scholar

Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E., & Herrera, F. (2011b). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402. https://doi.org/10.1002/asi.21525CoboM.J.López-HerreraA.G.Herrera-ViedmaE.HerreraF.2011bScience mapping software tools: Review, analysis, and cooperative study among toolsJournal of the American Society for Information Science and Technology62713821402https://doi.org/10.1002/asi.2152510.1002/asi.21525Search in Google Scholar

Cobo, M.J., Lõpez-Herrera, A.G., Herrera-Viedma, E., & Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609–1630. https://doi.org/10.1002/asi.22688CoboM.J.Lõpez-HerreraA.G.Herrera-ViedmaE.HerreraF.2012SciMAT: A new science mapping analysis software toolJournal of the American Society for Information Science and Technology63816091630https://doi.org/10.1002/asi.2268810.1002/asi.22688Search in Google Scholar

Cobo, M.J., Martínez, M.A., Gutiérrez-Salcedo, M., Fujita, H., & Herrera-Viedma, E. (2015). 25 years at Knowledge-Based Systems: A bibliometric analysis. Knowledge-Based Systems, 80, 3–13. https://doi.org/10.1016/j.knosys.2014.12.035CoboM.J.MartínezM.A.Gutiérrez-SalcedoM.FujitaH.Herrera-ViedmaE.201525 years at Knowledge-Based Systems: A bibliometric analysisKnowledge-Based Systems80313https://doi.org/10.1016/j.knosys.2014.12.03510.1016/j.knosys.2014.12.035Search in Google Scholar

Cook, D., & Holder, L. (2006). Mining graph data. John Wiley and Sons Inc. https://books.google.com.br/books?hl=pt-BR&lr=&id=bHGy0_H0g8QC&oi=fnd&pg=PR7&dq=cook+%22Mining+graph+data%22&ots=FtWbVNf0hQ&sig=H3zgSQPkN4YwbubpOy7kBjiKvTUCookD.HolderL.2006Mining graph dataJohn Wiley and Sons Inchttps://books.google.com.br/books?hl=pt-BR&lr=&id=bHGy0_H0g8QC&oi=fnd&pg=PR7&dq=cook+%22Mining+graph+data%22&ots=FtWbVNf0hQ&sig=H3zgSQPkN4YwbubpOy7kBjiKvTU10.1002/0470073047Search in Google Scholar

Da Costa, M.B., Dos Santos, L.M.A.L., Schaefer, J.L., Baierle, I.C., & Nara, E.O.B. (2019). Industry 4.0 technologies basic network identification. Scientometrics, 121(2), 977–994. https://doi.org/10.1007/s11192-019-03216-7Da CostaM.B.Dos SantosL.M.A.L.SchaeferJ.L.BaierleI.C.NaraE.O.B.2019Industry 4.0 technologies basic network identificationScientometrics1212977994https://doi.org/10.1007/s11192-019-03216-710.1007/s11192-019-03216-7Search in Google Scholar

Daghigh, R., Ibrahim, A., Jin, G.L., Ruslan, M.H., & Sopian, K. (2011). Predicting the performance of amorphous and crystalline silicon based photovoltaic solar thermal collectors. Energy Conversion and Management, 52(3), 1741–1747. https://doi.org/10.1016/j.enconman.2010.10.039DaghighR.IbrahimA.JinG.L.RuslanM.H.SopianK.2011Predicting the performance of amorphous and crystalline silicon based photovoltaic solar thermal collectorsEnergy Conversion and Management52317411747https://doi.org/10.1016/j.enconman.2010.10.03910.1016/j.enconman.2010.10.039Search in Google Scholar

De Solla Price, D., & Gürsey, S. (1975). Studies in Scientometrics I Transience and Continuance in Scientific Authorship. Ciência Da Informação, 4(1).De Solla PriceD.GürseyS.1975Studies in Scientometrics I Transience and Continuance in Scientific AuthorshipCiência Da Informação41Search in Google Scholar

Dominković, D.F., Bačeković, I., Ćosić, B., Krajačić, G., Pukšec, T., Duić, N., & Markovska, N. (2016). Zero carbon energy system of South East Europe in 2050. Applied Energy, 184, 1517–1528. https://doi.org/10.1016/j.apenergy.2016.03.046DominkovićD.F.BačekovićI.ĆosićB.KrajačićG.PukšecT.DuićN.MarkovskaN.2016Zero carbon energy system of South East Europe in 2050Applied Energy18415171528https://doi.org/10.1016/j.apenergy.2016.03.04610.1016/j.apenergy.2016.03.046Search in Google Scholar

Du, E., Zhang, N., Hodge, B.M., Kang, C., Kroposki, B., & Xia, Q. (2018). Economic justification of concentrating solar power in high renewable energy penetrated power systems. Applied Energy, 222, 649–661. https://doi.org/10.1016/j.apenergy.2018.03.161DuE.ZhangN.HodgeB.M.KangC.KroposkiB.XiaQ.2018Economic justification of concentrating solar power in high renewable energy penetrated power systemsApplied Energy222649661https://doi.org/10.1016/j.apenergy.2018.03.16110.1016/j.apenergy.2018.03.161Search in Google Scholar

Du, E., Zhang, N., Hodge, B.M., Wang, Q., Lu, Z., Kang, C., Kroposki, B., & Xia, Q. (2019). Operation of a high renewable penetrated power system with CSP plants: A look-ahead stochastic unit commitment model. IEEE Transactions on Power Systems, 34(1), 140–151. https://doi.org/10.1109/TPWRS.2018.2866486DuE.ZhangN.HodgeB.M.WangQ.LuZ.KangC.KroposkiB.XiaQ.2019Operation of a high renewable penetrated power system with CSP plants: A look-ahead stochastic unit commitment modelIEEE Transactions on Power Systems341140151https://doi.org/10.1109/TPWRS.2018.286648610.1109/TPWRS.2018.2866486Search in Google Scholar

Ducom, G., Gautier, M., Pietraccini, M., Tagutchou, J.P., Lebouil, D., & Gourdon, R. (2020). Comparative analyses of three olive mill solid residues from different countries and processes for energy recovery by gasification. Renewable Energy, 145, 180–189. https://doi.org/10.1016/j.renene.2019.05.116DucomG.GautierM.PietracciniM.TagutchouJ.P.LebouilD.GourdonR.2020Comparative analyses of three olive mill solid residues from different countries and processes for energy recovery by gasificationRenewable Energy145180189https://doi.org/10.1016/j.renene.2019.05.11610.1016/j.renene.2019.05.116Search in Google Scholar

Fagiano, L., & Schnez, S. (2017). On the take-off of airborne wind energy systems based on rigid wings. Renewable Energy, 107, 473–488. https://doi.org/10.1016/j.renene.2017.02.023FagianoL.SchnezS.2017On the take-off of airborne wind energy systems based on rigid wingsRenewable Energy107473488https://doi.org/10.1016/j.renene.2017.02.02310.1016/j.renene.2017.02.023Search in Google Scholar

Fagiano, Lorenzo, Milanese, M., & Piga, D. (2010). High-altitude wind power generation. IEEE Transactions on Energy Conversion, 25(1), 168–180. https://doi.org/10.1109/TEC.2009.2032582FagianoLorenzoMilaneseM.PigaD.2010High-altitude wind power generationIEEE Transactions on Energy Conversion251168180https://doi.org/10.1109/TEC.2009.203258210.1109/TEC.2009.2032582Search in Google Scholar

Fayaz, H., Rahim, N.A., Hasanuzzaman, M., Nasrin, R., & Rivai, A. (2019). Numerical and experimental investigation of the effect of operating conditions on performance of PVT and PVT-PCM. Renewable Energy, 143, 827–841. https://doi.org/10.1016/j.renene.2019.05.041FayazH.RahimN.A.HasanuzzamanM.NasrinR.RivaiA.2019Numerical and experimental investigation of the effect of operating conditions on performance of PVT and PVT-PCMRenewable Energy143827841https://doi.org/10.1016/j.renene.2019.05.04110.1016/j.renene.2019.05.041Search in Google Scholar

Garfield, E. (1994). Scientography: Mapping the tracks of science. Contents: Social & Behavioral Sciences, 7(45), 5–10.GarfieldE.1994Scientography: Mapping the tracks of scienceContents: Social & Behavioral Sciences745510Search in Google Scholar

Garner, J., Porter, A.L., Leidolf, A., & Baker, M. (2020). Measuring and visualizing research collaboration and productivity. Journal of Data and Information Science, 3(1), 54–81. https://doi.org/10.2478/jdis-2018-0004GarnerJ.PorterA.L.LeidolfA.BakerM.2020Measuring and visualizing research collaboration and productivityJournal of Data and Information Science315481https://doi.org/10.2478/jdis-2018-000410.2478/jdis-2018-0004Search in Google Scholar

Gibb, D., Johnson, M., Romaní, J., Gasia, J., Cabeza, L.F., & Seitz, A. (2018). Process integration of thermal energy storage systems – Evaluation methodology and case studies. Applied Energy, 230, 750–760. https://doi.org/10.1016/j.apenergy.2018.09.001GibbD.JohnsonM.RomaníJ.GasiaJ.CabezaL.F.SeitzA.2018Process integration of thermal energy storage systems – Evaluation methodology and case studiesApplied Energy230750760https://doi.org/10.1016/j.apenergy.2018.09.00110.1016/j.apenergy.2018.09.001Search in Google Scholar

Granovskii, M., Dincer, I., & Rosen, M.A. (2007). Exergetic life cycle assessment of hydrogen production from renewables. Journal of Power Sources, 167(2), 461–471. https://doi.org/10.1016/j.jpowsour.2007.02.031GranovskiiM.DincerI.RosenM.A.2007Exergetic life cycle assessment of hydrogen production from renewablesJournal of Power Sources1672461471https://doi.org/10.1016/j.jpowsour.2007.02.03110.1016/j.jpowsour.2007.02.031Search in Google Scholar

Guler, A.T., Waaijer, C.J.F., Mohammed, Y., & Palmblad, M. (2016). Automating bibliometric analyses using Taverna scientific workflows: A tutorial on integrating Web Services. Journal of Informetrics, 10(3), 830–841. https://doi.org/10.1016/j.joi.2016.05.002GulerA.T.WaaijerC.J.F.MohammedY.PalmbladM.2016Automating bibliometric analyses using Taverna scientific workflows: A tutorial on integrating Web ServicesJournal of Informetrics103830841https://doi.org/10.1016/j.joi.2016.05.00210.1016/j.joi.2016.05.002Search in Google Scholar

Hacatoglu, K., Dincer, I., & Rosen, M.A. (2011). Exergy analysis of a hybrid solar hydrogen system with activated carbon storage. International Journal of Hydrogen Energy, 36(5), 3273–3282. https://doi.org/10.1016/j.ijhydene.2010.12.034HacatogluK.DincerI.RosenM.A.2011Exergy analysis of a hybrid solar hydrogen system with activated carbon storageInternational Journal of Hydrogen Energy36532733282https://doi.org/10.1016/j.ijhydene.2010.12.03410.1016/j.ijhydene.2010.12.034Search in Google Scholar

Hajibandeh, N., Shafie-khah, M., Osório, G.J., Aghaei, J., & Catalão, J.P.S. (2018). A heuristic multi-objective multi-criteria demand response planning in a system with high penetration of wind power generators. Applied Energy, 212, 721–732. https://doi.org/10.1016/j.apenergy.2017.12.076HajibandehN.Shafie-khahM.OsórioG.J.AghaeiJ.CatalãoJ.P.S.2018A heuristic multi-objective multi-criteria demand response planning in a system with high penetration of wind power generatorsApplied Energy212721732https://doi.org/10.1016/j.apenergy.2017.12.07610.1016/j.apenergy.2017.12.076Search in Google Scholar

Hanel, M., & Escobar, R. (2013). Influence of solar energy resource assessment uncertainty in the levelized electricity cost of concentrated solar power plants in Chile. Renewable Energy, 49, 96–100. https://doi.org/10.1016/j.renene.2012.01.056HanelM.EscobarR.2013Influence of solar energy resource assessment uncertainty in the levelized electricity cost of concentrated solar power plants in ChileRenewable Energy4996100https://doi.org/10.1016/j.renene.2012.01.05610.1016/j.renene.2012.01.056Search in Google Scholar

Haseeb, M., Abidin, I.S.Z., Hye, Q.M.A., & Hartani, N.H. (2019). The impact of renewable energy on economic well-being of Malaysia: Fresh evidence from auto regressive distributed lag bound testing approach. International Journal of Energy Economics and Policy, 9(1), 269–275. https://doi.org/10.32479/ijeep.7229HaseebM.AbidinI.S.Z.HyeQ.M.A.HartaniN.H.2019The impact of renewable energy on economic well-being of Malaysia: Fresh evidence from auto regressive distributed lag bound testing approachInternational Journal of Energy Economics and Policy91269275https://doi.org/10.32479/ijeep.722910.32479/ijeep.7229Search in Google Scholar

Hassan, A., Wahab, A., Qasim, M.A., Janjua, M.M., Ali, M.A., Ali, H.M., Jadoon, T.R., Ali, E., Raza, A., & Javaid, N. (2020). Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system. Renewable Energy, 145, 282–293. https://doi.org/10.1016/j.renene.2019.05.130HassanA.WahabA.QasimM.A.JanjuaM.M.AliM.A.AliH.M.JadoonT.R.AliE.RazaA.JavaidN.2020Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids systemRenewable Energy145282293https://doi.org/10.1016/j.renene.2019.05.13010.1016/j.renene.2019.05.130Search in Google Scholar

Hodge, B.M., Brancucci Martinez-Anido, C., Wang, Q., Chartan, E., Florita, A., & Kiviluoma, J. (2018). The combined value of wind and solar power forecasting improvements and electricity storage. Applied Energy, 214, 1–15. https://doi.org/10.1016/j.apenergy.2017.12.120HodgeB.M.Brancucci Martinez-AnidoC.WangQ.ChartanE.FloritaA.KiviluomaJ.2018The combined value of wind and solar power forecasting improvements and electricity storageApplied Energy214115https://doi.org/10.1016/j.apenergy.2017.12.12010.1016/j.apenergy.2017.12.120Search in Google Scholar

Hu, C., Chen, X., Dai, Q., Wang, M., Qu, L., & Dai, L. (2017). Earth-abundant carbon catalysts for renewable generation of clean energy from sunlight and water. Nano Energy, 41, 367–376. https://doi.org/10.1016/j.nanoen.2017.09.029HuC.ChenX.DaiQ.WangM.QuL.DaiL.2017Earth-abundant carbon catalysts for renewable generation of clean energy from sunlight and waterNano Energy41367376https://doi.org/10.1016/j.nanoen.2017.09.02910.1016/j.nanoen.2017.09.029Search in Google Scholar

IRENA. (2018). Renewable Energy and Jobs – Annual Review 2018. In /publications/2018/May/Renewable-Energy-and-Jobs-Annual-Review-2018. https://www.irena.org/publications/2018/May/Renewable-Energy-and-Jobs-Annual-Review-2018IRENA2018Renewable Energy and Jobs – Annual Review 2018In /publications/2018/May/Renewable-Energy-and-Jobs-Annual-Review-2018. https://www.irena.org/publications/2018/May/Renewable-Energy-and-Jobs-Annual-Review-2018Search in Google Scholar

Jacob, R., Belusko, M., Inés Fernández, A., Cabeza, L.F., Saman, W., & Bruno, F. (2016). Embodied energy and cost of high temperature thermal energy storage systems for use with concentrated solar power plants. Applied Energy, 180, 586–597. https://doi.org/10.1016/j.apenergy.2016.08.027JacobR.BeluskoM.Inés FernándezA.CabezaL.F.SamanW.BrunoF.2016Embodied energy and cost of high temperature thermal energy storage systems for use with concentrated solar power plantsApplied Energy180586597https://doi.org/10.1016/j.apenergy.2016.08.02710.1016/j.apenergy.2016.08.027Search in Google Scholar

Khalid, F., Dincer, I., & Rosen, M.A. (2015). Energy and exergy analyses of a solar-biomass integrated cycle for multigeneration. Solar Energy, 112, 290–299. https://doi.org/10.1016/j.solener.2014.11.027KhalidF.DincerI.RosenM.A.2015Energy and exergy analyses of a solar-biomass integrated cycle for multigenerationSolar Energy112290299https://doi.org/10.1016/j.solener.2014.11.02710.1016/j.solener.2014.11.027Search in Google Scholar

Kipper, L.M., Furstenau, L.B., Hoppe, D., Frozza, R., & Iepsen, S. (2020). Scopus scientific mapping production in industry 4.0 (2011–2018): a bibliometric analysis. International Journal of Production Research, 58(6), 1605–1627. https://doi.org/10.1080/00207543.2019.1671625KipperL.M.FurstenauL.B.HoppeD.FrozzaR.IepsenS.2020Scopus scientific mapping production in industry 4.0 (2011–2018): a bibliometric analysisInternational Journal of Production Research58616051627https://doi.org/10.1080/00207543.2019.167162510.1080/00207543.2019.1671625Search in Google Scholar

Komendantova, N., Patt, A., Barras, L., & Battaglini, A. (2012). Perception of risks in renewable energy projects: The case of concentrated solar power in North Africa. Energy Policy, 40(1), 103–109. https://doi.org/10.1016/j.enpol.2009.12.008KomendantovaN.PattA.BarrasL.BattagliniA.2012Perception of risks in renewable energy projects: The case of concentrated solar power in North AfricaEnergy Policy401103109https://doi.org/10.1016/j.enpol.2009.12.00810.1016/j.enpol.2009.12.008Search in Google Scholar

Krajačić, G., Vujanović, M., Duić, N., Kılkış, Ş., Rosen, M.A., & Ahmad Al-Nimr, M. (2018). Integrated approach for sustainable development of energy, water and environment systems. Energy Conversion and Management, 159, 398–412. https://doi.org/10.1016/j.enconman.2017.12.016KrajačićG.VujanovićM.DuićN.KılkışŞ.RosenM.A.Ahmad Al-NimrM.2018Integrated approach for sustainable development of energy, water and environment systemsEnergy Conversion and Management159398412https://doi.org/10.1016/j.enconman.2017.12.01610.1016/j.enconman.2017.12.016Search in Google Scholar

Kumar, R.S., & Kaliyaperumal, K. (2015). A scientometric analysis of mobile technology publications. Scientometrics, 105, 921–939. https://doi.org/10.1007/s11192-015-1710-7KumarR.S.KaliyaperumalK.2015A scientometric analysis of mobile technology publicationsScientometrics105921939https://doi.org/10.1007/s11192-015-1710-710.1007/s11192-015-1710-7Search in Google Scholar

Leblanc, J., Andrews, J., & Akbarzadeh, A. (2010). Low-temperature solar-thermal multi-effect evaporation desalination systems. International Journal of Energy Research, 34(5), 393–403. https://doi.org/10.1002/er.1642LeblancJ.AndrewsJ.AkbarzadehA.2010Low-temperature solar-thermal multi-effect evaporation desalination systemsInternational Journal of Energy Research345393403https://doi.org/10.1002/er.164210.1002/er.1642Search in Google Scholar

Letcher, T.M. (2018). Why Solar Energy? In A Comprehensive Guide to Solar Energy Systems (pp. 3–16). Elsevier. https://doi.org/10.1016/b978-0-12-811479-7.00001-4LetcherT.M.2018Why Solar Energy?InA Comprehensive Guide to Solar Energy Systems316Elsevierhttps://doi.org/10.1016/b978-0-12-811479-7.00001-410.1016/B978-0-12-811479-7.00001-4Search in Google Scholar

Leydesdorff, L., & Persson, O. (2010). Mapping the geography of science: Distribution patterns and networks of relations among cities and institutes. Journal of the American Society for Information Science and Technology, 61(8), 1622–1634. https://doi.org/10.1002/asi.21347LeydesdorffL.PerssonO.2010Mapping the geography of science: Distribution patterns and networks of relations among cities and institutesJournal of the American Society for Information Science and Technology61816221634https://doi.org/10.1002/asi.2134710.1002/asi.21347Search in Google Scholar

Light, R.P., Polley, D.E., & Börner, K. (2014). Open data and open code for big science of science studies. Scientometrics, 101, 1535–1551. https://doi.org/10.1007/s11192-014-1238-2LightR.P.PolleyD.E.BörnerK.2014Open data and open code for big science of science studiesScientometrics10115351551https://doi.org/10.1007/s11192-014-1238-210.1007/s11192-014-1238-2Search in Google Scholar

Liu, X., Feng, X., & He, Y. (2019). Rapid discrimination of the categories of the biomass pellets using laser-induced breakdown spectroscopy. Renewable Energy, 143, 176–182. https://doi.org/10.1016/j.renene.2019.04.137LiuX.FengX.HeY.2019Rapid discrimination of the categories of the biomass pellets using laser-induced breakdown spectroscopyRenewable Energy143176182https://doi.org/10.1016/j.renene.2019.04.13710.1016/j.renene.2019.04.137Search in Google Scholar

Longo, M., Foiadelli, F., & Yaïci, W. (2019). Simulation and optimisation study of the integration of distributed generation and electric vehicles in smart residential district. International Journal of Energy and Environmental Engineering, 10(3), 271–285. https://doi.org/10.1007/s40095-019-0301-4LongoM.FoiadelliF.YaïciW.2019Simulation and optimisation study of the integration of distributed generation and electric vehicles in smart residential districtInternational Journal of Energy and Environmental Engineering103271285https://doi.org/10.1007/s40095-019-0301-410.1007/s40095-019-0301-4Search in Google Scholar

Lopez-Rey, A., Campinez-Romero, S., Gil-Ortego, R., & Colmenar-Santos, A. (2019). Evaluation of supply–demand adaptation of photovoltaic–wind hybrid plants integrated into an urban environment. Energies, 12(9), 1780. https://doi.org/10.3390/en12091780Lopez-ReyA.Campinez-RomeroS.Gil-OrtegoR.Colmenar-SantosA.2019Evaluation of supply–demand adaptation of photovoltaic–wind hybrid plants integrated into an urban environmentEnergies1291780https://doi.org/10.3390/en1209178010.3390/en12091780Search in Google Scholar

Madrazo, A., González, A., Martínez, R., Domingo, R., Mañana, M., Arroyo, A., Castro, P.B., Silió, D., & Lecuna, R. (2015). Analysis of a real case of ampacity management in a 132 kV network integrating high rates of wind energy. Renewable Energy and Power Quality Journal, 1(13), 797–800. https://doi.org/10.24084/repqj13.513MadrazoA.GonzálezA.MartínezR.DomingoR.MañanaM.ArroyoA.CastroP.B.SilióD.LecunaR.2015Analysis of a real case of ampacity management in a 132 kV network integrating high rates of wind energyRenewable Energy and Power Quality Journal113797800https://doi.org/10.24084/repqj13.51310.24084/repqj13.513Search in Google Scholar

Madrazo, A., González, A., Martínez, R., Mañana, M., Hervás, E., Arroyo, A., Castro, P.B., & Silió, D. (2013). Increasing grid integration of wind energy by using ampacity techniques. Renewable Energy and Power Quality Journal, 1(11), 1121–1124. https://doi.org/10.24084/repqj11.549MadrazoA.GonzálezA.MartínezR.MañanaM.HervásE.ArroyoA.CastroP.B.SilióD.2013Increasing grid integration of wind energy by using ampacity techniquesRenewable Energy and Power Quality Journal11111211124https://doi.org/10.24084/repqj11.54910.24084/repqj11.549Search in Google Scholar

Maleki, A., Rosen, M.A., & Pourfayaz, F. (2017). Optimal operation of a grid-connected hybrid renewable energy system for residential applications. Sustainability (Switzerland), 9(8), 1314. https://doi.org/10.3390/su9081314MalekiA.RosenM.A.PourfayazF.2017Optimal operation of a grid-connected hybrid renewable energy system for residential applicationsSustainability (Switzerland)981314https://doi.org/10.3390/su908131410.3390/su9081314Search in Google Scholar

Martí-Ballester, C.P. (2019). Do European renewable energy mutual funds foster the transition to a low-carbon economy? Renewable Energy, 143, 1299–1309. https://doi.org/10.1016/j.renene.2019.05.095Martí-BallesterC.P.2019Do European renewable energy mutual funds foster the transition to a low-carbon economy?Renewable Energy14312991309https://doi.org/10.1016/j.renene.2019.05.09510.1016/j.renene.2019.05.095Search in Google Scholar

Martínez, M.A., Cobo, M.J., Herrera, M., & Herrera-Viedma, E. (2015). Analyzing the Scientific Evolution of Social Work Using Science Mapping. Research on Social Work Practice, 25(2), 257–277. https://doi.org/10.1177/1049731514522101MartínezM.A.CoboM.J.HerreraM.Herrera-ViedmaE.2015Analyzing the Scientific Evolution of Social Work Using Science MappingResearch on Social Work Practice252257277https://doi.org/10.1177/104973151452210110.1177/1049731514522101Search in Google Scholar

Mena, R., Escobar, R., Lorca, Negrete-Pincetic, M., & Olivares, D. (2019). The impact of concentrated solar power in electric power systems: A Chilean case study. Applied Energy, 235, 258–283. https://doi.org/10.1016/j.apenergy.2018.10.088MenaR.EscobarR.LorcaNegrete-PinceticM.OlivaresD.2019The impact of concentrated solar power in electric power systems: A Chilean case studyApplied Energy235258283https://doi.org/10.1016/j.apenergy.2018.10.08810.1016/j.apenergy.2018.10.088Search in Google Scholar

Moeller, C., Meiss, J., Mueller, B., Hlusiak, M., Breyer, C., Kastner, M., & Twele, J. (2014). Transforming the electricity generation of the Berlin-Brandenburg region, Germany. Renewable Energy, 72, 39–50. https://doi.org/10.1016/j.renene.2014.06.042MoellerC.MeissJ.MuellerB.HlusiakM.BreyerC.KastnerM.TweleJ.2014Transforming the electricity generation of the Berlin-Brandenburg region, GermanyRenewable Energy723950https://doi.org/10.1016/j.renene.2014.06.04210.1016/j.renene.2014.06.042Search in Google Scholar

Nara, E.O.B., Schaefer, J.L., de Moraes, J., Tedesco, L.P.C., Furtado, J.C., & Baierle, I.C. (2019). Sourcing research papers on small- and medium-sized enterprises’ competitiveness: An approach based on authors’ networks. Revista Espanola de Documentacion Cientifica, 42(2), e230. https://doi.org/10.3989/redc.2019.2.1602NaraE.O.B.SchaeferJ.L.de MoraesJ.TedescoL.P.C.FurtadoJ.C.BaierleI.C.2019Sourcing research papers on small- and medium-sized enterprises’ competitiveness: An approach based on authors’ networksRevista Espanola de Documentacion Cientifica422e230https://doi.org/10.3989/redc.2019.2.160210.3989/redc.2019.2.1602Search in Google Scholar

Nazri, N.S., Fudholi, A., Ruslan, M.H., & Sopian, K. (2018). Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air Collector. International Journal of Power Electronics and Drive System (IJPEDS), 9(2), 795–802. https://doi.org/10.11591/ijpeds.v9.i2.pp795-802NazriN.S.FudholiA.RuslanM.H.SopianK.2018Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air CollectorInternational Journal of Power Electronics and Drive System (IJPEDS)92795802https://doi.org/10.11591/ijpeds.v9.i2.pp795-80210.11591/ijpeds.v9.i2.pp795-802Search in Google Scholar

Newman, M.E.J. (2001a). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E – Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(1), 016131. https://doi.org/10.1103/PhysRevE.64.016131NewmanM.E.J.2001aScientific collaboration networks. I. Network construction and fundamental resultsPhysical Review E – Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics641016131. https://doi.org/10.1103/PhysRevE.64.01613110.1103/PhysRevE.64.01613111461355Search in Google Scholar

Newman, M.E.J. (2001b). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E – Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(1), 016132. https://doi.org/10.1103/PhysRevE.64.016132NewmanM.E.J.2001bScientific collaboration networks. II. Shortest paths, weighted networks, and centralityPhysical Review E – Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics641016132. https://doi.org/10.1103/PhysRevE.64.01613210.1103/PhysRevE.64.01613211461356Search in Google Scholar

Orwig, K.D., Ahlstrom, M.L., Banunarayanan, V., Sharp, J., Wilczak, J.M., Freedman, J., Haupt, S.E., Cline, J., Bartholomy, O., Hamann, H.F., Hodge, B.M., Finley, C., Nakafuji, D., Peterson, J.L., Maggio, D., & Marquis, M. (2015). Recent trends in variable generation forecasting and its value to the power system. IEEE Transactions on Sustainable Energy, 6(3), 924–933. https://doi.org/10.1109/TSTE.2014.2366118OrwigK.D.AhlstromM.L.BanunarayananV.SharpJ.WilczakJ.M.FreedmanJ.HauptS.E.ClineJ.BartholomyO.HamannH.F.HodgeB.M.FinleyC.NakafujiD.PetersonJ.L.MaggioD.MarquisM.2015Recent trends in variable generation forecasting and its value to the power systemIEEE Transactions on Sustainable Energy63924933https://doi.org/10.1109/TSTE.2014.236611810.1109/TSTE.2014.2366118Search in Google Scholar

Osório, G.J., Lujano-Rojas, J.M., Matias, J.C.O., & Catalão, J.P.S. (2015). A new scenario generation-based method to solve the unit commitment problem with high penetration of renewable energies. International Journal of Electrical Power and Energy Systems, 64, 1063–1072. https://doi.org/10.1016/j.ijepes.2014.09.010OsórioG.J.Lujano-RojasJ.M.MatiasJ.C.O.CatalãoJ.P.S.2015A new scenario generation-based method to solve the unit commitment problem with high penetration of renewable energiesInternational Journal of Electrical Power and Energy Systems6410631072https://doi.org/10.1016/j.ijepes.2014.09.01010.1016/j.ijepes.2014.09.010Search in Google Scholar

Othman, M.Y., Ibrahim, A., Jin, G.L., Ruslan, M.H., & Sopian, K. (2013). Photovoltaic-thermal (PV/T) technology – The future energy technology. Renewable Energy, 49, 171–174. https://doi.org/10.1016/j.renene.2012.01.038OthmanM.Y.IbrahimA.JinG.L.RuslanM.H.SopianK.2013Photovoltaic-thermal (PV/T) technology – The future energy technologyRenewable Energy49171174https://doi.org/10.1016/j.renene.2012.01.03810.1016/j.renene.2012.01.038Search in Google Scholar

Oyedepo, S.O., Adaramola, M.S., & Paul, S.S. (2012). Analysis of wind speed data and wind energy potential in three selected locations in South-East Nigeria. International Journal of Energy and Environmental Engineering, 3(1), 1–11. https://doi.org/10.1186/2251-6832-3-7OyedepoS.O.AdaramolaM.S.PaulS.S.2012Analysis of wind speed data and wind energy potential in three selected locations in South-East NigeriaInternational Journal of Energy and Environmental Engineering31111https://doi.org/10.1186/2251-6832-3-710.1201/b18529-3Search in Google Scholar

Parliament, E. (2009). Directiva 2009/28/CE do Parlamento Europeu e do Conselho. Jornal Oficial Da União Europeia, 47. https://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=CELEX:32009L0028&from=ENParliamentE.2009Directiva 2009/28/CE do Parlamento Europeu e do ConselhoJornal Oficial Da União Europeia47https://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=CELEX:32009L0028&from=ENSearch in Google Scholar

Peiró, G., Prieto, C., Gasia, J., Jové, A., Miró, L., & Cabeza, L.F. (2018). Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operation. Renewable Energy, 121, 236–248. https://doi.org/10.1016/j.renene.2018.01.026PeiróG.PrietoC.GasiaJ.JovéA.MiróL.CabezaL.F.2018Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operationRenewable Energy121236248https://doi.org/10.1016/j.renene.2018.01.02610.1016/j.renene.2018.01.026Search in Google Scholar

Pfeifer, A., Krajačić, G., Ljubas, D., & Duić, N. (2019). Increasing the integration of solar photovoltaics in energy mix on the road to low emissions energy system – Economic and environmental implications. Renewable Energy, 143, 1310–1317. https://doi.org/10.1016/j.renene.2019.05.080PfeiferA.KrajačićG.LjubasD.DuićN.2019Increasing the integration of solar photovoltaics in energy mix on the road to low emissions energy system – Economic and environmental implicationsRenewable Energy14313101317https://doi.org/10.1016/j.renene.2019.05.08010.1016/j.renene.2019.05.080Search in Google Scholar

Poole, A.D., Barnett, A.M., Boes, E., Weinberg, C.J., Ogden, J.M., Carlson, D.E., ..., & Nitsch, J. (1993). Renewable Energy: Sources for fuels and electricity. Island Press. https://books.google.com.br/books?hl=pt-BR&lr=&id=40XtqVMRxOUC&oi=fnd&pg=PA1&dq=Grubb,+M.+J.,+%26+Meyer,+N.+I.+(1993).+Wind+resources.+Renewable+Energy:+Sources+for+Fuels+and+Electricity,+198.&ots=j0ItF__mPr&sig=DFzX4tTyS4dsxCY_iKyjDOnCRc8PooleA.D.BarnettA.M.BoesE.WeinbergC.J.OgdenJ.M.CarlsonD.E.NitschJ.1993Renewable Energy: Sources for fuels and electricityIsland Presshttps://books.google.com.br/books?hl=pt-BR&lr=&id=40XtqVMRxOUC&oi=fnd&pg=PA1&dq=Grubb,+M.+J.,+%26+Meyer,+N.+I.+(1993).+Wind+resources.+Renewable+Energy:+Sources+for+Fuels+and+Electricity,+198.&ots=j0ItF__mPr&sig=DFzX4tTyS4dsxCY_iKyjDOnCRc8Search in Google Scholar

Rasat, M.S.M., Wahab, R., Mohamed, M., Iqbal Ahmad, M., Hazim Mohamad Amini, M., Mohd Nazri Wan Abdul Rahman, W., Khairul Azhar Abdul Razab, M., Ahmad Mohd Yunus, A., Kelantan, M., & Campus, J. (2016). Preliminary study on properties of small diameter wild leucaena leucocephala species as potential biomass energy sources. ARPN Journal of Engineering and Applied Sciences, 11(9). www.arpnjournals.comRasatM.S.M.WahabR.MohamedM.Iqbal AhmadM.Hazim Mohamad AminiM.Mohd Nazri Wan Abdul RahmanW.Khairul Azhar Abdul RazabM.Ahmad Mohd YunusA.KelantanM.CampusJ.2016Preliminary study on properties of small diameter wild leucaena leucocephala species as potential biomass energy sourcesARPN Journal of Engineering and Applied Sciences119www.arpnjournals.comSearch in Google Scholar

Ren, C., An, N., Wang, J., Li, L., Hu, B., & Shang, D. (2014). Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting. Knowledge-Based Systems, 56, 226–239. https://doi.org/10.1016/j.knosys.2013.11.015RenC.AnN.WangJ.LiL.HuB.ShangD.2014Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecastingKnowledge-Based Systems56226239https://doi.org/10.1016/j.knosys.2013.11.01510.1016/j.knosys.2013.11.015Search in Google Scholar

Rezaie, B., Reddy, B.V., & Rosen, M.A. (2018). Exergy Assessment of a Solar-Assisted District Energy System. The Open Fuels & Energy Science Journal, 11, 30. https://doi.org/10.2174/1876973x01811010030RezaieB.ReddyB.V.RosenM.A.2018Exergy Assessment of a Solar-Assisted District Energy SystemThe Open Fuels & Energy Science Journal1130https://doi.org/10.2174/1876973x0181101003010.2174/1876973X01811010030Search in Google Scholar

Rodrigues, E.M.G., Osório, G.J., Godina, R., Bizuayehu, A.W., Lujano-Rojas, J.M., Matias, J.C.O., & Catalão, J.P.S. (2015). Modelling and sizing of NaS (sodium sulfur) battery energy storage system for extending wind power performance in Crete Island. Energy, 90 Part 2, 1606–1617. https://doi.org/10.1016/j.energy.2015.06.116RodriguesE.M.G.OsórioG.J.GodinaR.BizuayehuA.W.Lujano-RojasJ.M.MatiasJ.C.O.CatalãoJ.P.S.2015Modelling and sizing of NaS (sodium sulfur) battery energy storage system for extending wind power performance in Crete IslandEnergy90Part 216061617https://doi.org/10.1016/j.energy.2015.06.11610.1016/j.energy.2015.06.116Search in Google Scholar

Rosa, C.B., Rediske, G., Rigo, P.D., Wendt, J.F.M., Michels, L., & Siluk, J.C.M. (2018). Development of a computational tool for measuring organizational competitiveness in the photovoltaic power plants. Energies, 11(4). https://doi.org/10.3390/en11040867RosaC.B.RediskeG.RigoP.D.WendtJ.F.M.MichelsL.SilukJ.C.M.2018Development of a computational tool for measuring organizational competitiveness in the photovoltaic power plantsEnergies114https://doi.org/10.3390/en1104086710.3390/en11040867Search in Google Scholar

Roselli, C., Diglio, G., Sasso, M., & Tariello, F. (2019). A novel energy index to assess the impact of a solar PV-based ground source heat pump on the power grid. Renewable Energy, 143, 488–500. https://doi.org/10.1016/j.renene.2019.05.023RoselliC.DiglioG.SassoM.TarielloF.2019A novel energy index to assess the impact of a solar PV-based ground source heat pump on the power gridRenewable Energy143488500https://doi.org/10.1016/j.renene.2019.05.02310.1016/j.renene.2019.05.023Search in Google Scholar

Ruiz-Cabañas, F.J., Prieto, C., Madina, V., Fernández, A.I., & Cabeza, L.F. (2017). Materials selection for thermal energy storage systems in parabolic trough collector solar facilities using high chloride content nitrate salts. Solar Energy Materials and Solar Cells, 163, 134–147. https://doi.org/10.1016/j.solmat.2017.01.028Ruiz-CabañasF.J.PrietoC.MadinaV.FernándezA.I.CabezaL.F.2017Materials selection for thermal energy storage systems in parabolic trough collector solar facilities using high chloride content nitrate saltsSolar Energy Materials and Solar Cells163134147https://doi.org/10.1016/j.solmat.2017.01.02810.1016/j.solmat.2017.01.028Search in Google Scholar

Rukman, N.S.B., Fudholi, A., Taslim, I., Indrianti, M.A., Manyoe, I.N., Lestari, U., & Sopian, K. (2019). Energy and exergy efficiency of water-based photovoltaic thermal (PVT) systems: An overview. International Journal of Power Electronics and Drive Systems, 10(2), 987–994. https://doi.org/10.11591/ijpeds.v10.i2.pp987-994RukmanN.S.B.FudholiA.TaslimI.IndriantiM.A.ManyoeI.N.LestariU.SopianK.2019Energy and exergy efficiency of water-based photovoltaic thermal (PVT) systems: An overviewInternational Journal of Power Electronics and Drive Systems102987994https://doi.org/10.11591/ijpeds.v10.i2.pp987-99410.11591/ijpeds.v10.i2.pp987-994Search in Google Scholar

Sakamoto, R., Senjyu, T., Kaneko, T., Urasaki, N., Takagi, T., & Sugimoto, S. (2008). Output power leveling of wind turbine generator by pitch angle control using H⧜ control. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 162(4), 17–24. https://doi.org/10.1002/eej.20657SakamotoR.SenjyuT.KanekoT.UrasakiN.TakagiT.SugimotoS.2008Output power leveling of wind turbine generator by pitch angle control using H⧜ controlElectrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi)16241724https://doi.org/10.1002/eej.2065710.1109/PSCE.2006.296239Search in Google Scholar

Salameh, Z., New York, L., & Diego, S. (2014). Renewable Energy System Design. Academic Press. http://elsevier.com/SalamehZ.New YorkL.DiegoS.2014Renewable Energy System DesignAcademic Presshttp://elsevier.com/Search in Google Scholar

Sassmannshausen, S.P., & Volkmann, C. (2018). The Scientometrics of Social Entrepreneurship and Its Establishment as an Academic Field. Journal of Small Business Management, 56(2), 251–273. https://doi.org/10.1111/jsbm.12254SassmannshausenS.P.VolkmannC.2018The Scientometrics of Social Entrepreneurship and Its Establishment as an Academic FieldJournal of Small Business Management562251273https://doi.org/10.1111/jsbm.1225410.1111/jsbm.12254Search in Google Scholar

Schaefer, J.L., Siluk, J.C.M., Carvalho, P.S. de, Renes Pinheiro, J., & Schneider, P.S. (2020). Management Challenges and Opportunities for Energy Cloud Development and Diffusion. Energies, 13(16), 4048. https://doi.org/10.3390/en13164048SchaeferJ.L.SilukJ.C.M.CarvalhoP.S. deRenes PinheiroJ.SchneiderP.S.2020Management Challenges and Opportunities for Energy Cloud Development and DiffusionEnergies13164048https://doi.org/10.3390/en1316404810.3390/en13164048Search in Google Scholar

Sci2 Tool. (2019). A Tool for Science of Science Research and Practice. https://sci2.cns.iu.edu/user/index.phpSci2 Tool2019A Tool for Science of Science Research and Practicehttps://sci2.cns.iu.edu/user/index.phpSearch in Google Scholar

Senjyu, T., Sakamoto, R., Urasaki, N., Higa, H., Uezato, K., & Funabashi, T. (2006). Output power control of wind turbine generator by pitch angle control using minimum variance control. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 154(2), 10–18. https://doi.org/10.1002/eej.20247SenjyuT.SakamotoR.UrasakiN.HigaH.UezatoK.FunabashiT.2006Output power control of wind turbine generator by pitch angle control using minimum variance controlElectrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi)15421018https://doi.org/10.1002/eej.2024710.1002/eej.20247Search in Google Scholar

Shahbaz, M., Solarin, S.A., Hammoudeh, S., & Shahzad, S.J.H. (2017). Bounds testing approach to analyzing the environment Kuznets curve hypothesis with structural beaks: The role of biomass energy consumption in the United States. Energy Economics, 68, 548–565. https://doi.org/10.1016/j.eneco.2017.10.004ShahbazM.SolarinS.A.HammoudehS.ShahzadS.J.H.2017Bounds testing approach to analyzing the environment Kuznets curve hypothesis with structural beaks: The role of biomass energy consumption in the United StatesEnergy Economics68548565https://doi.org/10.1016/j.eneco.2017.10.00410.1016/j.eneco.2017.10.004Search in Google Scholar

Sharizal Sirrajudin, M., Sukhairi Mat Rasat, M., Wahab, R., Hazim Mohamad Amini, M., Mohamed, M., Iqbal Ahmad, M., Moktar, J., Azhar Ibrahim, M., Kelantan, M., & Campus, J. (2016). Enhancing the Energy Properties of Fugel Pellets from Oil Palm Fronds of Agricultural Residues by Mixing with Glycerin. 11(9). www.arpnjournals.comSharizal SirrajudinM.Sukhairi Mat RasatM.WahabR.Hazim Mohamad AminiM.MohamedM.Iqbal AhmadM.MoktarJ.Azhar IbrahimM.KelantanM.CampusJ.2016Enhancing the Energy Properties of Fugel Pellets from Oil Palm Fronds of Agricultural Residues by Mixing with Glycerin119www.arpnjournals.comSearch in Google Scholar

Singh, B., Baharin, N.A., Remeli, M.F., Oberoi, A., Date, A., & Akbarzadeh, A. (2017). Experimental Analysis of Thermoelectric Heat Exchanger for Power Generation from Salinity Gradient Solar Pond Using Low-Grade Heat. Journal of Electronic Materials, 46, 2854–2859. https://doi.org/10.1007/s11664-016-5009-0SinghB.BaharinN.A.RemeliM.F.OberoiA.DateA.AkbarzadehA.2017Experimental Analysis of Thermoelectric Heat Exchanger for Power Generation from Salinity Gradient Solar Pond Using Low-Grade HeatJournal of Electronic Materials4628542859https://doi.org/10.1007/s11664-016-5009-010.1007/s11664-016-5009-0Search in Google Scholar

Singh, R., Tundee, S., & Akbarzadeh, A. (2011). Electric power generation from solar pond using combined thermosyphon and thermoelectric modules. Solar Energy, 85(2), 371–378. https://doi.org/10.1016/j.solener.2010.11.012SinghR.TundeeS.AkbarzadehA.2011Electric power generation from solar pond using combined thermosyphon and thermoelectric modulesSolar Energy852371378https://doi.org/10.1016/j.solener.2010.11.01210.1016/j.solener.2010.11.012Search in Google Scholar

Sinha, A., Shahbaz, M., & Balsalobre, D. (2017). Exploring the relationship between energy usage segregation and environmental degradation in N-11 countries. Journal of Cleaner Production, 168, 1217–1229. https://doi.org/10.1016/j.jclepro.2017.09.071SinhaA.ShahbazM.BalsalobreD.2017Exploring the relationship between energy usage segregation and environmental degradation in N-11 countriesJournal of Cleaner Production16812171229https://doi.org/10.1016/j.jclepro.2017.09.07110.1016/j.jclepro.2017.09.071Search in Google Scholar

Skillicorn, D. (2007). Understanding complex datasets: Data mining with matrix decompositions. In Understanding Complex Datasets: Data Mining with Matrix Decompositions (1st Editio). https://doi.org/10.1201/9781584888338SkillicornD.2007Understanding complex datasets: Data mining with matrix decompositionsInUnderstanding Complex Datasets: Data Mining with Matrix Decompositions1st Editiohttps://doi.org/10.1201/978158488833810.1201/9781584888338Search in Google Scholar

Small, H., & Garfield, E. (1985). The geography of science: Disciplinary and national mappings. Journal of Information Science, 11(4), 147–159. https://doi.org/10.1177/016555158501100402SmallH.GarfieldE.1985The geography of science: Disciplinary and national mappingsJournal of Information Science114147159https://doi.org/10.1177/01655515850110040210.1177/016555158501100402Search in Google Scholar

Soltani, R., Mohammadzadeh Keleshtery, P., Vahdati, M., Khoshgoftarmanesh, M.H., Rosen, M.A., & Amidpour, M. (2014). Multi-objective optimization of a solar-hybrid cogeneration cycle: Application to CGAM problem. Energy Conversion and Management, 81, 60–71. https://doi.org/10.1016/j.enconman.2014.02.013SoltaniR.Mohammadzadeh KeleshteryP.VahdatiM.KhoshgoftarmaneshM.H.RosenM.A.AmidpourM.2014Multi-objective optimization of a solar-hybrid cogeneration cycle: Application to CGAM problemEnergy Conversion and Management816071https://doi.org/10.1016/j.enconman.2014.02.01310.1016/j.enconman.2014.02.013Search in Google Scholar

Stolarski, M.J., Szczukowski, S., Tworkowski, J., Krzyzaniak, M., Gulczyński, P., & Mleczek, M. (2013). Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renewable Energy, 57, 20–26. https://doi.org/10.1016/j.renene.2013.01.005StolarskiM.J.SzczukowskiS.TworkowskiJ.KrzyzaniakM.GulczyńskiP.MleczekM.2013Comparison of quality and production cost of briquettes made from agricultural and forest origin biomassRenewable Energy572026https://doi.org/10.1016/j.renene.2013.01.00510.1016/j.renene.2013.01.005Search in Google Scholar

Suarez, J.A., & Luengo, C.A. (2003). Coffee Husk Briquettes: A New Renewable Energy Source. Energy Sources, 25(10), 961–967. https://doi.org/10.1080/00908310303395SuarezJ.A.LuengoC.A.2003Coffee Husk Briquettes: A New Renewable Energy SourceEnergy Sources2510961967https://doi.org/10.1080/0090831030339510.1080/00908310390232415Search in Google Scholar

Tarfaoui, M., Nachtane, M., & Boudounit, H. (2019). Finite Element Analysis of Composite Offshore Wind Turbine Blades Under Operating Conditions. Journal of Thermal Science and Engineering Applications, 12(1), 011001. https://doi.org/10.1115/1.4042123TarfaouiM.NachtaneM.BoudounitH.2019Finite Element Analysis of Composite Offshore Wind Turbine Blades Under Operating ConditionsJournal of Thermal Science and Engineering Applications121011001. https://doi.org/10.1115/1.404212310.1115/1.4042123Search in Google Scholar

Tokimatsu, K., Konishi, S., Ishihara, K., Tezuka, T., Yasuoka, R., & Nishio, M. (2016). Role of innovative technologies under the global zero emissions scenarios. Applied Energy, 162, 1483–1493. https://doi.org/10.1016/j.apenergy.2015.02.051TokimatsuK.KonishiS.IshiharaK.TezukaT.YasuokaR.NishioM.2016Role of innovative technologies under the global zero emissions scenariosApplied Energy16214831493https://doi.org/10.1016/j.apenergy.2015.02.05110.1016/j.apenergy.2015.02.051Search in Google Scholar

Valderrama, C., Gibert, O., Arcal, J., Solano, P., Akbarzadeh, A., Larrotcha, E., & Cortina, J.L. (2011). Solar energy storage by salinity gradient solar pond: Pilot plant construction and gradient control. Desalination, 279(1–3), 445–450. https://doi.org/10.1016/j.desal.2011.06.035ValderramaC.GibertO.ArcalJ.SolanoP.AkbarzadehA.LarrotchaE.CortinaJ.L.2011Solar energy storage by salinity gradient solar pond: Pilot plant construction and gradient controlDesalination2791–3445450https://doi.org/10.1016/j.desal.2011.06.03510.1016/j.desal.2011.06.035Search in Google Scholar

Vazquez, M. de L., Waaub, J.P., & Ilinca, A. (2013). MCDA: Measuring robustness as a tool to address strategic wind farms issues. Green Energy and Technology, 129, 153–182. https://doi.org/10.1007/978-1-4471-5143-2_8VazquezM. de L.WaaubJ.P.IlincaA.2013MCDA: Measuring robustness as a tool to address strategic wind farms issuesGreen Energy and Technology129153182https://doi.org/10.1007/978-1-4471-5143-2_810.1007/978-1-4471-5143-2_8Search in Google Scholar

Wang, J., Hu, J., Ma, K., & Zhang, Y. (2015). A self-adaptive hybrid approach for wind speed forecasting. Renewable Energy, 78, 374–385. https://doi.org/10.1016/j.renene.2014.12.074WangJ.HuJ.MaK.ZhangY.2015A self-adaptive hybrid approach for wind speed forecastingRenewable Energy78374385https://doi.org/10.1016/j.renene.2014.12.07410.1016/j.renene.2014.12.074Search in Google Scholar

Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press.WassermanS.FaustK.1994Social network analysis: Methods and applicationsCambridge University Press10.1017/CBO9780511815478Search in Google Scholar

Whiteman, A., Sohn, H., Esparrago, J., Arkhipova, I., & Elsayed, S. (2018). Renewable Capacity Statistics 2018. In /publications/2018/Mar/Renewable-Capacity-Statistics-2018. https://www.irena.org/publications/2018/Mar/Renewable-Capacity-Statistics-2018WhitemanA.SohnH.EsparragoJ.ArkhipovaI.ElsayedS.2018Renewable Capacity Statistics 2018In /publications/2018/Mar/Renewable-Capacity-Statistics-2018. https://www.irena.org/publications/2018/Mar/Renewable-Capacity-Statistics-2018Search in Google Scholar

Wu, J. (2019). Infrastructure of Scientometrics: The Big and Network Picture. Journal of Data and Information Science, 4(4), 1–12. https://doi.org/10.2478/jdis-2019-0017WuJ.2019Infrastructure of Scientometrics: The Big and Network PictureJournal of Data and Information Science44112https://doi.org/10.2478/jdis-2019-001710.2478/jdis-2019-0017Search in Google Scholar

Wuestman, M.L., Hoekman, J., & Frenken, K. (2019). The geography of scientific citations. Research Policy, 48(7), 1771–1780. https://doi.org/10.1016/j.respol.2019.04.004WuestmanM.L.HoekmanJ.FrenkenK.2019The geography of scientific citationsResearch Policy48717711780https://doi.org/10.1016/j.respol.2019.04.00410.1016/j.respol.2019.04.004Search in Google Scholar

Xu, H., Wang, C., Dong, K., Luo, R., Yue, Z., & Pang, H. (2020). A study of methods to identify industry-university-research institution cooperation partners based on innovation Chain theory. Journal of Data and Information Science, 3(2), 38–61. https://doi.org/10.2478/jdis-2018-0008XuH.WangC.DongK.LuoR.YueZ.PangH.2020A study of methods to identify industry-university-research institution cooperation partners based on innovation Chain theoryJournal of Data and Information Science323861https://doi.org/10.2478/jdis-2018-000810.2478/jdis-2018-0008Search in Google Scholar

Yang, W., Wang, J., Lu, H., Niu, T., & Du, P. (2019). Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: A case study in China. Journal of Cleaner Production, 222, 942–959. https://doi.org/10.1016/j.jclepro.2019.03.036YangW.WangJ.LuH.NiuT.DuP.2019Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: A case study in ChinaJournal of Cleaner Production222942959https://doi.org/10.1016/j.jclepro.2019.03.03610.1016/j.jclepro.2019.03.036Search in Google Scholar

Zhang, W., Kleiber, W., Florita, A.R., Hodge, B.M., & Mather, B. (2019). Modeling and simulation of high-frequency solar irradiance. IEEE Journal of Photovoltaics, 9(1), 124–131. https://doi.org/10.1109/JPHOTOV.2018.2879756ZhangW.KleiberW.FloritaA.R.HodgeB.M.MatherB.2019Modeling and simulation of high-frequency solar irradianceIEEE Journal of Photovoltaics91124131https://doi.org/10.1109/JPHOTOV.2018.287975610.1109/JPHOTOV.2018.2879756Search in Google Scholar

Zhang, W., Maleki, A., Rosen, M.A., & Liu, J. (2018). Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage. Energy, 163, 191–207. https://doi.org/10.1016/j.energy.2018.08.112ZhangW.MalekiA.RosenM.A.LiuJ.2018Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storageEnergy163191207https://doi.org/10.1016/j.energy.2018.08.11210.1016/j.energy.2018.08.112Search in Google Scholar

eISSN:
2543-683X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Computer Sciences, Information Technology, Project Management, Databases and Data Mining